Differentiability and Differentiation MCQ Questions & Answers in Calculus | Maths

Learn Differentiability and Differentiation MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

101. Let $$f$$ be differentiable for all $$x.$$ If $$f\left( 1 \right) = - 2\,\,\& \,f'\left( x \right) \geqslant 2$$      for $$x \in \left[ {1,\,6} \right],$$   then-

A $$f\left( 6 \right) \geqslant 8$$
B $$f\left( 6 \right) < 8$$
C $$f\left( 6 \right) < 5$$
D $$f\left( 6 \right) = 5$$
Answer :   $$f\left( 6 \right) \geqslant 8$$

102. If $$y = {\tan ^{ - 1}}\sqrt {\frac{{x + 1}}{{x - 1}}} $$     then $$\frac{{dy}}{{dx}}$$  is equal to :

A $$\frac{{ - 1}}{{2\left| x \right|\sqrt {{x^2} - 1} }}$$
B $$\frac{{ - 1}}{{2x\sqrt {{x^2} - 1} }}$$
C $$\frac{1}{{2x\sqrt {{x^2} - 1} }}$$
D none of these
Answer :   $$\frac{{ - 1}}{{2\left| x \right|\sqrt {{x^2} - 1} }}$$

103. The domain of the derivative of the function \[f\left( x \right) = \left\{ \begin{array}{l} {\tan ^{ - 1}}x\,\,\,\,\,\,\,\,\,\,{\rm{if}}\,\,\left| x \right| \le 1\\ \frac{1}{2}\left( {\left| x \right| - 1} \right)\,\,\,{\rm{if}}\,\,\left| x \right| > 1 \end{array} \right.\]       is-

A $$R - \left\{ 0 \right\}$$
B $$R - \left\{ 1 \right\}$$
C $$R - \left\{ { - 1} \right\}$$
D $$R - \left\{ { - 1,\,1} \right\}$$
Answer :   $$R - \left\{ { - 1,\,1} \right\}$$

104. If $$x{e^{xy}} - y = {\sin ^2}x$$    then $$\frac{{dy}}{{dx}}$$  at $$x=0$$  is :

A 0
B 1
C $$-1$$
D none of these
Answer :   1

105. If $${e^x} = \frac{{\sqrt {1 + t} - \sqrt {1 - t} }}{{\sqrt {1 + t} + \sqrt {1 - t} }}$$     and $$\tan \frac{y}{2} = \sqrt {\frac{{1 - t}}{{1 + t}}} $$    then $$\frac{{dy}}{{dx}}$$  at $$t = \frac{1}{2}$$  is :

A $$ - \frac{1}{2}$$
B $$\frac{1}{2}$$
C 0
D none of these
Answer :   $$ - \frac{1}{2}$$

106. what is the derivative of $$\left| {x - 1} \right|$$  at $$x = 2\,?$$

A $$ - 1$$
B $$0$$
C $$1$$
D Derivative does not exist
Answer :   $$1$$

107. If $$f\left( x \right) = {e^{ - \,\frac{1}{{{x^2}}}}},\,x \ne 0,$$     and $$f\left( 0 \right) = 0$$   then $$f'\left( 0 \right)$$  is :

A 0
B 1
C $$e$$
D nonexistent
Answer :   0

108. If the prime sign (') represents differentiation w.r.t. $$x$$ and $$f'\left( x \right) = \sin \,x + \sin \,4x.\cos \,x$$       then $$f'\left( {2{x^2} + \frac{\pi }{2}} \right)$$   at $$x = \sqrt {\frac{\pi }{2}} $$   is equal to :

A 0
B $$-1$$
C $$ - 2\sqrt {2\pi } $$
D none of these
Answer :   $$ - 2\sqrt {2\pi } $$

109. What is the set of all points, where the function $$f\left( x \right) = \frac{x}{{1 + \left| x \right|}}$$    is differentiable ?

A $$\left( { - \infty ,\,\infty } \right){\text{ only}}$$
B $$\left( {0,\,\infty } \right){\text{ only}}$$
C $$\left( { - \infty ,\,0 } \right) \cup \left( {0,\,\infty } \right){\text{ only}}$$
D $$\left( { - \infty ,\,0} \right){\text{ only}}$$
Answer :   $$\left( { - \infty ,\,\infty } \right){\text{ only}}$$

110. If $$f\left( 1 \right) = 1,\,\,{f^1}\left( 1 \right) = 2,$$     then $$\mathop {\lim }\limits_{x \to 1} \frac{{\sqrt {f\left( x \right)} - 1}}{{\sqrt x - 1}}$$    is-

A $$2$$
B $$4$$
C $$1$$
D $$\frac{1}{2}$$
Answer :   $$2$$