Differentiability and Differentiation MCQ Questions & Answers in Calculus | Maths

Learn Differentiability and Differentiation MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

111. If $$f\left( x \right) = \frac{x}{{\sqrt {x + 1} - \sqrt x }}$$     be a real-valued function then :

A $$f\left( x \right)$$  is continuous, but $$f'\left( 0 \right)$$  does not exist
B $$f\left( x \right)$$  is differentiable at $$x=0$$
C $$f\left( x \right)$$  is not continuous at $$x=0$$
D $$f\left( x \right)$$  is not differentiable at $$x=0$$
Answer :   $$f\left( x \right)$$  is differentiable at $$x=0$$

112. The function given by $$y = \left| {\left| x \right| - 1} \right|$$   is differentiable for all real numbers except the points-

A $$\left\{ {0,\,1,\, - 1} \right\}$$
B $$ \pm 1$$
C $$1$$
D $$-1$$
Answer :   $$\left\{ {0,\,1,\, - 1} \right\}$$

113. A function $$f:R \to R$$   is defined as $$f\left( x \right) = {x^2}$$   for and for $$x \geqslant 0$$  and $$f\left( x \right) = - x$$   for $$x < 0.$$
Consider the following statements in respect of the above function :
1. The function is continuous at $$x = 0.$$
2. The function is differentiable at $$x = 0.$$
Which of the above statements is/are correct ?

A 1 only
B 2 only
C Both 1 and 2
D Neither 1 nor 2
Answer :   1 only

114. If $$y = \left( {1 + x} \right)\left( {1 + {x^2}} \right)\left( {1 + {x^4}} \right).....\left( {1 + {x^{{2^n}}}} \right)$$         then $$\frac{{dy}}{{dx}}$$  at $$x=0$$  is :

A 1
B $$-1$$
C 0
D none of these
Answer :   1

115. Let $$f''\left( x \right)$$  be continuous at $$x = 0$$  and $$f''\left( 0 \right) = 4.$$
Then value of $$\mathop {\lim }\limits_{x \to 0} \frac{{2f\left( x \right) - 3f\left( {2x} \right) + f\left( {4x} \right)}}{{{x^2}}}$$       is :

A $$12$$
B $$10$$
C $$6$$
D $$4$$
Answer :   $$12$$

116. Let $$3f\left( x \right) - 2f\left( {\frac{1}{x}} \right) = x,$$     then $$f'\left( 2 \right)$$  is equal to :

A $$\frac{2}{7}$$
B $$\frac{1}{2}$$
C $$2$$
D $$\frac{7}{2}$$
Answer :   $$\frac{1}{2}$$

117. The number of values of $$x\, \in \left[ {0,\,2} \right]$$   at which the real function $$f\left( x \right) = \left| {x - \frac{1}{2}} \right| + \left| {x - 1} \right| + \tan \,x$$       is not finitely differentiable is :

A 2
B 3
C 1
D 0
Answer :   3

118. Let $$y = {t^{10}} + 1$$   and $$x = {t^8} + 1,$$   then $$\frac{{{d^2}y}}{{d{x^2}}}$$  is equal to :

A $$\frac{5}{2}{t}$$
B $$20{t^8}$$
C $$\frac{5}{{16{t^6}}}$$
D none of these
Answer :   $$\frac{5}{{16{t^6}}}$$

119. Suppose that $$f\left( 0 \right) = - 3$$   and $$f'\left( x \right) \leqslant 5$$   for all values of $$x.$$ Then, the largest value which $$f\left( 2 \right)$$  can attain is ____.

A $$7$$
B $$10$$
C $$2$$
D $$9$$
Answer :   $$7$$

120. If the function \[g\left( x \right) = \left\{ \begin{array}{l} k\sqrt {x + 1} ,\,\,\,0 \le x \le 3\\ mx + 2,\,\,\,3 < x \le 5 \end{array} \right.\]       is differentiable, then the value of $$k+m$$   is-

A $$\frac{{10}}{3}$$
B $$4$$
C $$2$$
D $$\frac{{16}}{5}$$
Answer :   $$2$$