Differentiability and Differentiation MCQ Questions & Answers in Calculus | Maths

Learn Differentiability and Differentiation MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

11. If $$y = {\log _{10}}x + {\log _x}10 + {\log _x}x + {\log _{10}}10$$        then what is $${\left( {\frac{{dy}}{{dx}}} \right)_{x = 10}}$$   equal to ?

A 10
B 2
C 1
D 0
Answer :   0

12. If $$y = {\left( {1 + \frac{1}{x}} \right)^x}$$   then $$\frac{{2\sqrt {{y_2}\left( 2 \right) + \frac{1}{8}} }}{{\left( {\log \frac{3}{2} - \frac{1}{3}} \right)}}$$     is equal to :

A 3
B 4
C 1
D 2
Answer :   3

13. Let \[f\left( x \right) = \left\{ \begin{array}{l} \left( {x - 1} \right)\sin \frac{1}{{x - 1}}\,{\rm{if}}\,\,x \ne 1\\ 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\rm{if}}\,\,x = 1 \end{array} \right.\]
Then which one of the following is true?

A $$f$$ is neither differentiable at $$x =0$$  nor at $$x=1$$
B $$f$$ is differentiable at $$x=0$$  and at $$x=1$$
C $$f$$ is differentiable at $$x =0$$  but not at $$x=1$$
D $$f$$ is differentiable at $$x = 1$$  but not at $$x=0$$
Answer :   $$f$$ is differentiable at $$x =0$$  but not at $$x=1$$

14. Let $$f\left( { - x} \right) = f\left( x \right).$$    Then $$f'\left( x \right)$$  must be :

A an even function
B an odd function
C a periodic function
D neither even nor odd
Answer :   an odd function

15. The derivative of $${\tan ^{ - 1}}\frac{{\sqrt {1 + {x^2}} - 1}}{x}$$    with respect to $${\tan ^{ - 1}}x$$   is :

A $$\frac{{\sqrt {1 + {x^2}} - 1}}{{{x^2}}}$$
B 1
C $$\frac{1}{{1 + {x^2}}}$$
D none of these
Answer :   none of these

16. If $$y = {\tan ^{ - 1}}\left( {\frac{{{2^x}}}{{1 + {2^{2x + 1}}}}} \right),$$     then $$\frac{{dy}}{{dx}}$$  at $$x = 0$$  is :

A $$\frac{3}{5}\log \,2$$
B $$\frac{2}{5}\log \,2$$
C $$ - \frac{3}{2}\log \,2$$
D $$\log \,2\left( {\frac{{ - 1}}{{10}}} \right)$$
Answer :   $$\log \,2\left( {\frac{{ - 1}}{{10}}} \right)$$

17. If $$f\left( x \right)$$  is continuous and differentiable function and $$f\left( {\frac{1}{n}} \right) = 0\,\forall \,n \geqslant 1$$    and $$n \in I,$$   then-

A $$f\left( x \right) = 0,\,x \in \left( {0,\,1} \right]$$
B $$f\left( 0 \right) = 0,\,f'\left( 0 \right) = 0$$
C $$f\left( 0 \right) = 0 = f'\left( 0 \right),\,x \in \left( {0,\,1} \right]$$
D $$f\left( 0 \right) = 0$$   and $$f'\left( 0 \right)$$  need not to be zero
Answer :   $$f\left( 0 \right) = 0,\,f'\left( 0 \right) = 0$$

18. Let $$f\left( x \right) = \lambda + \mu \left| x \right| + \nu {\left| x \right|^2},$$      where $$\lambda ,\,\mu ,\,\nu $$   are real constants. Then $$f'\left( 0 \right)$$  exists if :

A $$\mu = 0$$
B $$\nu = 0$$
C $$\lambda = 0$$
D $$\mu = \nu $$
Answer :   $$\mu = 0$$

19. If $$u = f\left( {{x^3}} \right),\,v = g\left( {{x^2}} \right),\,f'\left( x \right) = \cos \,x$$        and $$g'\left( x \right) = \sin \,x$$    then $$\frac{{du}}{{dv}}$$  is :

A $$\frac{3}{2}x\,\cos \,{x^3}.\,{\text{cosec}}\,{x^2}$$
B $$\frac{2}{3}\sin \,{x^3}.\sec \,{x^2}$$
C $$\tan \,x$$
D none of these
Answer :   $$\frac{3}{2}x\,\cos \,{x^3}.\,{\text{cosec}}\,{x^2}$$

20. If $$f\left( x \right) = x + \frac{x}{{1 + x}} + \frac{x}{{{{\left( {1 + x} \right)}^2}}} + .....{\text{to }}\infty ,$$         then at $$x = 0,\,f\left( x \right)$$

A has no limit
B is discontinuous
C is continuous but not differentiable
D is differentiable
Answer :   is discontinuous