Differentiability and Differentiation MCQ Questions & Answers in Calculus | Maths

Learn Differentiability and Differentiation MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

21. What is the derivative of $${\tan ^{ - 1}}\left( {\frac{{\sqrt {1 + {x^2}} - 1}}{x}} \right)$$     with respect to $${\tan ^{ - 1}}x\,?$$

A $$0$$
B $$\frac{1}{2}$$
C $$1$$
D $$x$$
Answer :   $$\frac{1}{2}$$

22. If the derivative of the function \[f\left( x \right) = \left\{ \begin{array}{l} \,\,\,\,a{x^2} + b\,\,\,\,\,\,\,\,\,\,\,x < - 1\\ b{x^2} + ax + a\,\,\,x \ge - 1 \end{array} \right.\]        is every where continuous, then what are the values of $$a$$ and $$b\,?$$

A $$a = 2,\,b = 3$$
B $$a = 3,\,b = 2$$
C $$a = - 2,\,b = - 3$$
D $$a = - 3,\,b = - 2$$
Answer :   $$a = 2,\,b = 3$$

23. If $$f\left( x \right) = \left| {\cos \,2x} \right|,$$    then $$f'\left( {\frac{\pi }{4} + 0} \right)$$   is equal to :

A $$2$$
B $$0$$
C $$-2$$
D none of these
Answer :   $$2$$

24. The integer $$n$$ for which $$\mathop {\lim }\limits_{x \to 0} \frac{{\left( {\cos \,x - 1} \right)\left( {\cos \,x - {e^x}} \right)}}{{{x^n}}}$$      is a finite non-zero number is-

A $$1$$
B $$2$$
C $$3$$
D $$4$$
Answer :   $$3$$

25. What is $$\mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {1 + x} - 1}}{x}$$     equal to ?

A $$0$$
B $$\frac{1}{2}$$
C $$1$$
D $$ - \frac{1}{2}$$
Answer :   $$\frac{1}{2}$$

26. Let $$f:R \to R$$    be a function defined by $$f\left( x \right) = \max \,\left\{ {x,\,{x^3}} \right\}.$$     The set of all points where $$f\left( x \right)$$  is NOT differentiable is-

A $$\left\{ { - 1,\,1} \right\}$$
B $$\left\{ { - 1,\,0} \right\}$$
C $$\left\{ {0,\,1} \right\}$$
D $$\left\{ { - 1,\,0,\,1} \right\}$$
Answer :   $$\left\{ { - 1,\,0,\,1} \right\}$$

27. The number of points in $$\left( {1,\,3} \right)$$  where $$f\left( x \right) = {a^{\left[ {{x^2}} \right]}},\,a > 1,$$    is not differentiable, where $$\left[ x \right]$$ denotes the integral part of $$x.$$

A 5
B 7
C 9
D 11
Answer :   7

28. Which one of the following statements is correct in respect of the function $$f\left( x \right) = {x^3}\sin \,x\,?$$

A $$f'\left( x \right)$$  changes sign from positive to negative at $$x = 0$$
B $$f'\left( x \right)$$  changes sign from positive to negative to positive at $$x = 0$$
C does not change sign at $$x = 0$$
D $$f''\left( 0 \right) \ne 0$$
Answer :   does not change sign at $$x = 0$$

29. Consider the following in respect of the function \[f\left( x \right) = \left\{ \begin{array}{l} 2 + x,\,\,\,\,\,x \ge 0\\ 2 - x,\,\,\,\,\,x < 0 \end{array} \right.\]
$$\eqalign{ & 1.\,\,\mathop {\lim }\limits_{x \to 1} f\left( x \right)\,{\text{does not exist}} \cr & 2.{\text{ }}\,f\left( x \right)\,{\text{is differentiable at }}x = 0 \cr & 3.{\text{ }}\,f\left( x \right)\,{\text{is continuous at }}x = 0 \cr} $$
Which of the above statements is/are correct ?

A 1 only
B 3 only
C 2 and 3 only
D 1 and 3 only
Answer :   1 and 3 only

30. If $$u = f\left( {{x^3}} \right),\,v = g\left( {{x^2}} \right),\,f'\left( x \right) = \cos \,x$$        and $$g'\left( x \right) = \sin \,x,$$   then $$\frac{{du}}{{dv}} = ?$$

A $$\frac{1}{2}x\,\cos \,{x^3}{\text{cosec }}{x^2}$$
B $$\frac{3}{2}x\,\cos \,{x^3}{\text{cosec }}{x^2}$$
C $$\frac{1}{2}x\,\sec \,{x^3}{\text{sin }}{x^2}$$
D $$\frac{3}{2}x\,\sec \,{x^3}{\text{cosec }}{x^2}$$
Answer :   $$\frac{3}{2}x\,\cos \,{x^3}{\text{cosec }}{x^2}$$