Differentiability and Differentiation MCQ Questions & Answers in Calculus | Maths
Learn Differentiability and Differentiation MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.
41.
Let $$S =$$ {$$t \in \,R:f\left( x \right) = \left| {x - \pi } \right|\left( {{e^{\left| x \right|}} - 1} \right)\sin \left| x \right|$$ is not differentiable at $$t.$$ } Then the set $$S$$ is equal to-
A
$$\left\{ 0 \right\}$$
B
$$\left\{ \pi \right\}$$
C
$$\left\{ {0,\,\pi } \right\}$$
D
$$\phi $$ (an empty set)
Answer :
$$\phi $$ (an empty set)
$$f\left( x \right) = \left| {x - \pi } \right|\left( {{e^{\left| x \right|}} - 1} \right)\sin \left| x \right|$$
Check differentiability of $$f\left( x \right)$$ at $${x = \pi }$$ and $$x=0$$
at $$x = \pi :$$
$$\eqalign{
& {\text{R}}{\text{.H}}{\text{.D}}{\text{.}} = \mathop {\lim }\limits_{h \to 0} \frac{{\left| {\pi + h - \pi } \right|\left( {{e^{\left| {x + h} \right|}} - 1} \right)\sin \left| {\pi + h} \right| - 0}}{h} = 0 \cr
& {\text{L}}{\text{.H}}{\text{.D}}{\text{.}} = \mathop {\lim }\limits_{h \to 0} \frac{{\left| {\pi - h - \pi } \right|\left( {{e^{\left| {x - h} \right|}} - 1} \right)\sin \left| {\pi - h} \right| - 0}}{{ - h}} = 0 \cr
& \because {\text{R}}{\text{.H}}{\text{.D}}{\text{.}} = {\text{L}}{\text{.H}}{\text{.D}}{\text{.}} \cr} $$
Therefore, function is differentiable at $$x = \pi $$
at $$x=0 :$$
$$\eqalign{
& {\text{R}}{\text{.H}}{\text{.D}}{\text{.}} = \mathop {\lim }\limits_{h \to 0} \frac{{\left| {h - \pi } \right|\left( {{e^{\left| h \right|}} - 1} \right)\sin \left| h \right| - 0}}{h} = 0 \cr
& {\text{L}}{\text{.H}}{\text{.D}}{\text{.}} = \mathop {\lim }\limits_{h \to 0} \frac{{\left| { - h - \pi } \right|\left( {{e^{\left| { - h} \right|}} - 1} \right)\sin \left| { - h} \right| - 0}}{{ - h}} = 0 \cr
& \therefore {\text{R}}{\text{.H}}{\text{.D}}{\text{.}} = {\text{L}}{\text{.H}}{\text{.D}}{\text{.}} \cr} $$
Therefore, function is differentiable.
at $$x=0.$$
Since, the function $$f\left( x \right)$$ is differentiable at all the points including $$z$$ and 0.
i.e., $$f\left( x \right)$$ is every where differentiable .
Therefore, there is no element in the set $$S.$$
$$ \Rightarrow S = \phi \,\,\left( {{\text{an empty set}}} \right)$$
42.
Let $$g\left( x \right) = \frac{{{{\left( {x - 1} \right)}^n}}}{{\log \,{{\cos }^m}\left( {x - 1} \right)}};\,0 < x < 2,$$ $$m$$ and $$n$$ are integers, $$m \ne 0,\,n > 0,$$ and let $$p$$ be the left hand derivative of $$\left| {x - 1} \right|$$ at $$x=1.$$ If $$\mathop {\lim }\limits_{x \to {1^ + }} g\left( x \right) = p,$$ then-
43.
\[{\rm{Let }}f\left( x \right) = \left| \begin{array}{l}
{x^3}\,\,\,\,\,\sin \,x\,\,\,\,\,\cos \,x\\
6\,\,\,\,\,\,\,\,\,\,\, - 1\,\,\,\,\,\,\,\,\,\,0\\
p\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{p^2}\,\,\,\,\,\,\,\,\,{p^3}
\end{array} \right|,\]
where $$p$$ is a constant. Then $$\frac{{{d^3}}}{{d{x^3}}}\left\{ {f\left( x \right)} \right\}$$ at $$x=0$$ is :
45.
If $$5f\left( x \right) + 3f\left( {\frac{1}{x}} \right) = x + 2$$ and $$y = xf\left( x \right)$$ then $${\left( {\frac{{dy}}{{dx}}} \right)_{x = 1}}$$ is equal to :
47.
The number of points at which the function $$f\left( x \right) = \left| {x - 0.5} \right| + \left| {x - 1} \right| + \tan \,x$$ does not have a derivative in the interval $$\left( {0,\,2} \right)$$ is :
A
0
B
1
C
2
D
3
Answer :
3
$$\left| {x - a} \right|$$ is not differentiable at $$x = a.$$
Also $$\tan \,x$$ is not differentiable if $$x = \left( {2k + 1} \right)\frac{\pi }{2},\,k\, \in \,I$$
$$\therefore $$ In the interval $$\left( {0,\,2} \right),\,f\left( x \right)$$ is not derivable at $$x = 0.5,\,x = 1$$ and $$x = \frac{\pi }{2}.$$
48.
Let \[f\left( x \right) = \left\{ \begin{array}{l}
{x^2}\left| {\cos \frac{\pi }{x}} \right|,\,\,\,\,x \ne 0\\
0,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x = 0
\end{array} \right.,\,x \in R\] then $$f$$ is-
A
differentiable both at $$x = 0$$ and at $$x =2$$
B
differentiable at $$x = 0$$ but not differentiable at $$x =2$$
C
not differentiable at $$x = 0$$ but differentiable at $$x =2$$
D
differentiable neither at $$x = 0$$ nor at $$x =2$$
Answer :
differentiable at $$x = 0$$ but not differentiable at $$x =2$$
49.
If the function $$f\left( x \right) = \left[ {\frac{{{{\left( {x - 2} \right)}^3}}}{a}} \right]\sin \left( {x - 2} \right) + a\,\cos \left( {x - 2} \right),\,\left[ . \right]$$ denotes the greatest integer function is continuous and differentiable in $$\left[ {4,\,6} \right]$$ then :
Since. $$\left[ {{x^3}} \right]$$ is not continuous and differentiable at integral points. So, $$f\left( x \right)$$ is continuous and differentiable in $$\left[ {4,\,6} \right]$$ if $$\left[ {\frac{{{{\left( {x - 2} \right)}^3}}}{a}} \right] = 0\,\, \Rightarrow a \geqslant 64$$
50.
If $$g$$ is the inverse function of $$f$$ and $$f'\left( x \right) = \sin \,x$$ then $$g'\left( x \right)$$ is :
A
$${\text{cosec}}\left\{ {g\left( x \right)} \right\}$$
B
$${\text{sin}}\left\{ {g\left( x \right)} \right\}$$
C
$$ - \frac{1}{{{\text{sin}}\left\{ {g\left( x \right)} \right\}}}$$
D
none of these
Answer :
$${\text{cosec}}\left\{ {g\left( x \right)} \right\}$$
$$\eqalign{
& f\left\{ {g\left( x \right)} \right\} \Rightarrow \frac{{df\left\{ {g\left( x \right)} \right\}}}{{dg\left( x \right)}}.g'\left( x \right) = 1 \cr
& \Rightarrow \sin \left\{ {g\left( x \right)} \right\}.g'\left( x \right) = 1 \cr
& \Rightarrow g'\left( x \right) = \frac{1}{{\sin \left\{ {g\left( x \right)} \right\}}} \cr} $$