Differentiability and Differentiation MCQ Questions & Answers in Calculus | Maths

Learn Differentiability and Differentiation MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

41. Let $$S =$$ {$$t \in \,R:f\left( x \right) = \left| {x - \pi } \right|\left( {{e^{\left| x \right|}} - 1} \right)\sin \left| x \right|$$        is not differentiable at $$t.$$ }  Then the set $$S$$ is equal to-

A $$\left\{ 0 \right\}$$
B $$\left\{ \pi \right\}$$
C $$\left\{ {0,\,\pi } \right\}$$
D $$\phi $$ (an empty set)
Answer :   $$\phi $$ (an empty set)

42. Let $$g\left( x \right) = \frac{{{{\left( {x - 1} \right)}^n}}}{{\log \,{{\cos }^m}\left( {x - 1} \right)}};\,0 < x < 2,$$       $$m$$ and $$n$$ are integers, $$m \ne 0,\,n > 0,$$   and let $$p$$ be the left hand derivative of $$\left| {x - 1} \right|$$   at $$x=1.$$   If $$\mathop {\lim }\limits_{x \to {1^ + }} g\left( x \right) = p,$$     then-

A $$n=1,\,\,m=1$$
B $$n=1,\,\,m=-1$$
C $$n=2,\,\,m=2$$
D $$n>2,\,\,m=n$$
Answer :   $$n=2,\,\,m=2$$

43. \[{\rm{Let }}f\left( x \right) = \left| \begin{array}{l} {x^3}\,\,\,\,\,\sin \,x\,\,\,\,\,\cos \,x\\ 6\,\,\,\,\,\,\,\,\,\,\, - 1\,\,\,\,\,\,\,\,\,\,0\\ p\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{p^2}\,\,\,\,\,\,\,\,\,{p^3} \end{array} \right|,\]
where $$p$$ is a constant. Then $$\frac{{{d^3}}}{{d{x^3}}}\left\{ {f\left( x \right)} \right\}$$   at $$x=0$$  is :

A $$p$$
B $$p + {p^2}$$
C $$p + {p^3}$$
D independent of $$p$$
Answer :   independent of $$p$$

44. If $$s = \sqrt {{t^2} + 1} ,$$   then $$\frac{{{d^2}s}}{{d{t^2}}}$$  is equal to :

A $$\frac{1}{s}$$
B $$\frac{1}{{{s^2}}}$$
C $$\frac{1}{{{s^3}}}$$
D $$\frac{1}{{{s^4}}}$$
Answer :   $$\frac{1}{{{s^3}}}$$

45. If $$5f\left( x \right) + 3f\left( {\frac{1}{x}} \right) = x + 2$$     and $$y = xf\left( x \right)$$   then $${\left( {\frac{{dy}}{{dx}}} \right)_{x = 1}}$$   is equal to :

A 14
B $$\frac{7}{8}$$
C 1
D none of these
Answer :   $$\frac{7}{8}$$

46. If $${\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} = {c^2},$$      for some $$c > 0$$  then $$\frac{{{{\left[ {1 + {{\left( {\frac{{dy}}{{dx}}} \right)}^2}} \right]}^{\frac{3}{2}}}}}{{\frac{{{d^2}y}}{{d{x^2}}}}}$$    is :

A is a constant dependent on $$a$$
B is a constant dependent on $$b$$
C is a constant independent of $$a$$ and $$b$$
D $$0$$
Answer :   is a constant independent of $$a$$ and $$b$$

47. The number of points at which the function $$f\left( x \right) = \left| {x - 0.5} \right| + \left| {x - 1} \right| + \tan \,x$$       does not have a derivative in the interval $$\left( {0,\,2} \right)$$  is :

A 0
B 1
C 2
D 3
Answer :   3

48. Let \[f\left( x \right) = \left\{ \begin{array}{l} {x^2}\left| {\cos \frac{\pi }{x}} \right|,\,\,\,\,x \ne 0\\ 0,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x = 0 \end{array} \right.,\,x \in R\]        then $$f$$ is-

A differentiable both at $$x = 0$$   and at $$x =2$$
B differentiable at $$x = 0$$   but not differentiable at $$x =2$$
C not differentiable at $$x = 0$$   but differentiable at $$x =2$$
D differentiable neither at $$x = 0$$   nor at $$x =2$$
Answer :   differentiable at $$x = 0$$   but not differentiable at $$x =2$$

49. If the function $$f\left( x \right) = \left[ {\frac{{{{\left( {x - 2} \right)}^3}}}{a}} \right]\sin \left( {x - 2} \right) + a\,\cos \left( {x - 2} \right),\,\left[ . \right]$$          denotes the greatest integer function is continuous and differentiable in $$\left[ {4,\,6} \right]$$  then :

A $$a\, \in \,\left[ {8,\,64} \right]$$
B $$a\, \in \left( {0,\,8} \right]$$
C $$a\, \in \left[ {64,\,\infty } \right)$$
D none of these
Answer :   $$a\, \in \left[ {64,\,\infty } \right)$$

50. If $$g$$ is the inverse function of $$f$$ and $$f'\left( x \right) = \sin \,x$$   then $$g'\left( x \right)$$  is :

A $${\text{cosec}}\left\{ {g\left( x \right)} \right\}$$
B $${\text{sin}}\left\{ {g\left( x \right)} \right\}$$
C $$ - \frac{1}{{{\text{sin}}\left\{ {g\left( x \right)} \right\}}}$$
D none of these
Answer :   $${\text{cosec}}\left\{ {g\left( x \right)} \right\}$$