Differentiability and Differentiation MCQ Questions & Answers in Calculus | Maths
Learn Differentiability and Differentiation MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.
51.
If $$f\left( x \right) = x,\,x \leqslant 1,$$ and $$f\left( x \right) = {x^2} + bx + c,\,x > 1,$$ and $$f'\left( x \right)$$ exists finitely for all $$x\, \in \,R$$ then :
52.
Consider the function \[f\left( x \right) = \left\{ \begin{array}{l}
\,\,\,\,{x^2},\,\,\,\,\,\,\,\,x > 2\\
3x - 2,\,\,x \le 2\,
\end{array} \right.\]
Which one of the following statements is correct in respect of the above function ?
A
$$f\left( x \right)$$ is derivable but not continuous at $$x = 2.$$
B
$$f\left( x \right)$$ is continuous but not derivable at $$x = 2.$$
C
$$f\left( x \right)$$ is neither continuous nor derivable at $$x = 2.$$
D
$$f\left( x \right)$$ is continuous as well as derivable at $$x = 2.$$
Answer :
$$f\left( x \right)$$ is continuous but not derivable at $$x = 2.$$
53.
Let $$f\left( x \right) = \sin \,x,\,g\left( x \right) = \left[ {x + 1} \right]$$ and $$g\left\{ {f\left( x \right) = h\left( x \right)} \right\},$$ where $$\left[ . \right]$$ is the greatest integer function. Then $$h'\left( {\frac{\pi }{2}} \right)$$ is :
54.
If $$y = {\cos ^{ - 1}}\left( {\frac{{5\cos \,x - 12\sin \,x}}{{13}}} \right),\,x\, \in \left( {0,\,\frac{\pi }{2}} \right),$$ then $$\frac{{dy}}{{dx}}$$ is equal to :
A
1
B
$$-1$$
C
0
D
none of these
Answer :
1
Let $$\cos \,\alpha = \frac{5}{{13}}.$$ Then $$\sin \,\alpha = \frac{{12}}{{13}}.$$
So, $$y = {\cos ^{ - 1}}\left\{ {\cos \,\alpha .\cos \,x - \sin \,\alpha .\sin \,x} \right\}$$
$$\therefore \,y = {\cos ^{ - 1}}\left\{ {\cos \left( {x + \alpha } \right)} \right\} = x + \alpha $$ ($$\because x + \alpha $$ is in the first or the second quadrant).
55.
Let $$0 < x < \pi $$ and $$y\left( x \right)$$ be given by $$\left( {1 + \sin \,x} \right){y^3} - \left( {\cos \,x} \right){y^2} + 2\left( {1 + \sin \,x} \right)y - 2\,\cos \,x = 0.$$
The derivative of $$y$$ with respect to $$\tan \frac{x}{2}$$ at $$x = \frac{\pi }{2}$$ is :
56.
Which one of the following functions is differentiable for all real values of $$x\,?$$
A
$$\frac{x}{{\left| x \right|}}$$
B
$$x\left| x \right|$$
C
$$\frac{1}{{\left| x \right|}}$$
D
$$\frac{1}{x}$$
Answer :
$$x\left| x \right|$$
Since $$\frac{x}{{\left| x \right|}}$$ is not continuous function.
$$\therefore $$ it is not differentiable also.
Also, L.H.D. and R.H.D. at $$x = 0$$ not equal.
Thus, only function given in option 'B' gives differentiability for all real values of $$x.$$
57.
If $$\left( x \right)$$ is differentiable and strictly increasing function, then the value of $$\mathop {\lim }\limits_{x \to 0} \frac{{f\left( {{x^2}} \right) - f\left( x \right)}}{{f\left( x \right) - f\left( 0 \right)}}$$ is-
A
$$1$$
B
$$0$$
C
$$-1$$
D
$$2$$
Answer :
$$-1$$
$$\eqalign{
& {\text{Let }}L = \mathop {\lim }\limits_{x \to 0} \frac{{f\left( {{x^2}} \right) - f\left( x \right)}}{{f\left( x \right) - f\left( 0 \right)}} \cr
& \left[ {\because f'\left( a \right) > 0,\,f\,{\text{being strictly increasing}}} \right] \cr} $$
Using L'Hospital rule, we get
$$\eqalign{
& L = \mathop {\lim }\limits_{x \to 0} \frac{{f'\left( {{x^2}} \right).2x - f'\left( x \right)}}{{f'\left( x \right)}} \cr
& = \mathop {\lim }\limits_{x \to 0} \frac{{f'\left( {{x^2}} \right).2x}}{{f'\left( x \right)}} - 1 \cr
& = 0 - 1 \cr
& = - 1 \cr} $$
58.
Let $$f\left( x \right) = \left[ {n + p\sin \,x} \right],\,x\, \in \left( {0,\,\pi } \right),\,n\, \in \,Z,\,p$$ is a prime number and $$\left[ x \right]=$$ the greatest integer less than or equal to $$x.$$ The number of points at which $$f\left( x \right)$$ is not differentiable is :
A
$$p$$
B
$$p-1$$
C
$$2p+1$$
D
$$2p-1$$
Answer :
$$2p-1$$
$$\left[ {n + p\sin \,x} \right]$$ is not differentiable at those points where $${n + p\sin \,x}$$ is an integer. As $$p$$ is a prime number, $${n + p\sin \,x}$$ is an integer if $$\sin \,x = 1,\, - 1,\,\frac{r}{p},$$ that is, $$x = \frac{\pi }{2},\, - \frac{\pi }{2},\,{\sin ^{ - 1}}\frac{r}{p},\,\pi - {\sin ^{ - 1}}\frac{r}{p},$$ where $$0 \leqslant r \leqslant p - 1.$$ But $$x \ne - \frac{\pi }{2},\,0.$$
$$\therefore $$ the function is not differentiable at $$x = \frac{\pi }{2},\,{\sin ^{ - 1}}\frac{r}{p},\,\pi - {\sin ^{ - 1}}\frac{r}{p},$$ where $$0 < r \leqslant p - 1.$$ So, the required number of points $$ = 1 + 2\left( {p - 1} \right) = 2p - 1.$$
59.
If $$f\left( x \right) = \cos \left\{ {\frac{\pi }{2}\left[ x \right] - {x^3}} \right\},\,1 < x < 2,$$ and $$\left[ x \right]$$ the greatest integer $$ \leqslant x,$$ then $$f'\left( {\root 3 \of {\frac{\pi }{2}} } \right)$$ is equal to :
A
0
B
$$3{\left( {\frac{\pi }{2}} \right)^{\frac{2}{3}}}$$
C
$$ - 3{\left( {\frac{\pi }{2}} \right)^{\frac{3}{2}}}$$