Differentiability and Differentiation MCQ Questions & Answers in Calculus | Maths

Learn Differentiability and Differentiation MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

51. If $$f\left( x \right) = x,\,x \leqslant 1,$$    and $$f\left( x \right) = {x^2} + bx + c,\,x > 1,$$       and $$f'\left( x \right)$$  exists finitely for all $$x\, \in \,R$$   then :

A $$b = - 1,\,c\, \in \,R$$
B $$c = 1,\,b\, \in \,R$$
C $$b=1,\,c=-1$$
D $$b=-1,\,c=1$$
Answer :   $$b=-1,\,c=1$$

52. Consider the function \[f\left( x \right) = \left\{ \begin{array}{l} \,\,\,\,{x^2},\,\,\,\,\,\,\,\,x > 2\\ 3x - 2,\,\,x \le 2\, \end{array} \right.\]
Which one of the following statements is correct in respect of the above function ?

A $$f\left( x \right)$$  is derivable but not continuous at $$x = 2.$$
B $$f\left( x \right)$$  is continuous but not derivable at $$x = 2.$$
C $$f\left( x \right)$$  is neither continuous nor derivable at $$x = 2.$$
D $$f\left( x \right)$$  is continuous as well as derivable at $$x = 2.$$
Answer :   $$f\left( x \right)$$  is continuous but not derivable at $$x = 2.$$

53. Let $$f\left( x \right) = \sin \,x,\,g\left( x \right) = \left[ {x + 1} \right]$$       and $$g\left\{ {f\left( x \right) = h\left( x \right)} \right\},$$    where $$\left[ . \right]$$ is the greatest integer function. Then $$h'\left( {\frac{\pi }{2}} \right)$$  is :

A nonexistent
B 1
C $$-1$$
D none of these
Answer :   nonexistent

54. If $$y = {\cos ^{ - 1}}\left( {\frac{{5\cos \,x - 12\sin \,x}}{{13}}} \right),\,x\, \in \left( {0,\,\frac{\pi }{2}} \right),$$          then $$\frac{{dy}}{{dx}}$$  is equal to :

A 1
B $$-1$$
C 0
D none of these
Answer :   1

55. Let $$0 < x < \pi $$   and $$y\left( x \right)$$  be given by $$\left( {1 + \sin \,x} \right){y^3} - \left( {\cos \,x} \right){y^2} + 2\left( {1 + \sin \,x} \right)y - 2\,\cos \,x = 0.$$
The derivative of $$y$$ with respect to $$\tan \frac{x}{2}$$  at $$x = \frac{\pi }{2}$$  is :

A $$\frac{1}{2}$$
B $$ - \frac{1}{2}$$
C $$2$$
D $$ - 2$$
Answer :   $$ - \frac{1}{2}$$

56. Which one of the following functions is differentiable for all real values of $$x\,?$$

A $$\frac{x}{{\left| x \right|}}$$
B $$x\left| x \right|$$
C $$\frac{1}{{\left| x \right|}}$$
D $$\frac{1}{x}$$
Answer :   $$x\left| x \right|$$

57. If $$\left( x \right)$$ is differentiable and strictly increasing function, then the value of $$\mathop {\lim }\limits_{x \to 0} \frac{{f\left( {{x^2}} \right) - f\left( x \right)}}{{f\left( x \right) - f\left( 0 \right)}}$$    is-

A $$1$$
B $$0$$
C $$-1$$
D $$2$$
Answer :   $$-1$$

58. Let $$f\left( x \right) = \left[ {n + p\sin \,x} \right],\,x\, \in \left( {0,\,\pi } \right),\,n\, \in \,Z,\,p$$         is a prime number and $$\left[ x \right]=$$  the greatest integer less than or equal to $$x.$$ The number of points at which $$f\left( x \right)$$  is not differentiable is :

A $$p$$
B $$p-1$$
C $$2p+1$$
D $$2p-1$$
Answer :   $$2p-1$$

59. If $$f\left( x \right) = \cos \left\{ {\frac{\pi }{2}\left[ x \right] - {x^3}} \right\},\,1 < x < 2,$$         and $$\left[ x \right]$$ the greatest integer $$ \leqslant x,$$  then $$f'\left( {\root 3 \of {\frac{\pi }{2}} } \right)$$   is equal to :

A 0
B $$3{\left( {\frac{\pi }{2}} \right)^{\frac{2}{3}}}$$
C $$ - 3{\left( {\frac{\pi }{2}} \right)^{\frac{3}{2}}}$$
D none of these
Answer :   0

60. If $$y = \sqrt {\log \,x + \sqrt {\log \,x + \sqrt {\log \,x + .....\infty } } } ,$$         then $$\frac{{dy}}{{dx}} = ?$$

A $$\frac{x}{{2y - 1}}$$
B $$\frac{x}{{2y + 1}}$$
C $$\frac{1}{{x\left( {2y - 1} \right)}}$$
D $$\frac{1}{{x\left( {1 - 2y} \right)}}$$
Answer :   $$\frac{1}{{x\left( {2y - 1} \right)}}$$