Differentiability and Differentiation MCQ Questions & Answers in Calculus | Maths

Learn Differentiability and Differentiation MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

61. If $$y = {\log ^n}x,$$   where $${\log ^n}$$  means $$\log \,\log \,\log .....$$    (repeated $$n$$ time), then $$x\,\log \,x\,\log \,x\,{\log ^2}x\,{\log ^3}x.....{\log ^{n - 1}}x\,{\log ^n}x\frac{{dy}}{{dx}}$$          is equal to :

A $$\log \,x$$
B $${\log ^n}x$$
C $$\frac{1}{{\log \,x}}$$
D $$1$$
Answer :   $${\log ^n}x$$

62. Let $$f:R \to R$$   be such that $$f\left( 1 \right) = 3$$   and $$f'\left( 1 \right) = 6.$$   Then $$\mathop {\lim }\limits_{x \to 0} {\left( {\frac{{f\left( {1 + x} \right)}}{{f\left( 1 \right)}}} \right)^{\frac{1}{x}}}$$    equals-

A $$1$$
B $${e^{\frac{1}{2}}}$$
C $${e^2}$$
D $${e^3}$$
Answer :   $${e^2}$$

63. $$x = t\cos \,t,\,y = t + \sin \,t$$      then $$\frac{{{d^2}x}}{{d{y^2}}}$$  at $$t = \frac{\pi }{2}$$   is equal to :

A $$\frac{{\pi + 4}}{2}$$
B $$ - \frac{{\pi + 4}}{2}$$
C $$-2$$
D none of these
Answer :   $$ - \frac{{\pi + 4}}{2}$$

64. If $$f$$ is a real valued differentiable function satisfying $$\left| {f\left( x \right) - f\left( y \right)} \right| \leqslant {\left( {x - y} \right)^2},\,x,\,y\, \in \,R$$        and $$f\left( 0 \right) = 0,$$   then $$f\left( 1 \right)$$  equals-

A $$-1$$
B $$0$$
C $$2$$
D $$1$$
Answer :   $$0$$

65. Let $$f:\left[ {2,\,7} \right] \to \left[ {0,\,\infty } \right)$$    be a continuous and differentiable function. Then, $$\left( {f\left( 7 \right) - f\left( 2 \right)} \right)\frac{{{{\left( {f\left( 7 \right)} \right)}^2} + {{\left( {f\left( 2 \right)} \right)}^2} + f\left( 2 \right)f\left( 7 \right)}}{3}$$         where $$c\, \in \left[ {2,\,7} \right].$$

A $$5{f^2}\left( c \right)f'\left( c \right)$$
B $$5f'\left( c \right)$$
C $$f\left( c \right)f'\left( c \right)$$
D none of these
Answer :   $$5{f^2}\left( c \right)f'\left( c \right)$$

66. If $$f\left( x \right) = \root 3 \of {\frac{{{x^4}}}{{\left| x \right|}}} ,\,x \ne 0$$     and $$f\left( 0 \right) = 0$$   is :

A continuous for all $$x$$ but not differentiable for any $$x$$
B continuous and differentiable for any $$x$$
C continuous for all $$x$$ and differentiable for all $$x \ne 0$$
D continuous and differentiable for all $$x \ne 0$$
Answer :   continuous for all $$x$$ and differentiable for all $$x \ne 0$$

67. Let $$f\left( x \right) = 15 - \left| {x - 10} \right|\,;\,x\,R.$$      Then the set of all values of $$x,$$ at which the function, $$g\left( x \right) = f\left( {f\left( x \right)} \right)$$     is not differentiable, is:

A $$\left\{ {5,\,10,\,15} \right\}$$
B $$\left\{ {10,\,15} \right\}$$
C $$\left\{ {5,\,10,\,15,\,20} \right\}$$
D $$\left\{ {10} \right\}$$
Answer :   $$\left\{ {5,\,10,\,15} \right\}$$

68. If $$y = \frac{{\left( {a - x} \right)\sqrt {a - x} - \left( {b - x} \right)\sqrt {x - b} }}{{\sqrt {a - x} + \sqrt {x - b} }},$$         then $$\frac{{dy}}{{dx}}$$  wherever it is defined is :

A $$\frac{{x + \left( {a + b} \right)}}{{\sqrt {\left( {a - x} \right)\left( {x - b} \right)} }}$$
B $$\frac{{2x - a - b}}{{2\sqrt {a - x} \sqrt {x - b} }}$$
C $$ - \frac{{\left( {a + b} \right)}}{{2\sqrt {\left( {a - x} \right)\left( {x - b} \right)} }}$$
D $$\frac{{2x + \left( {a + b} \right)}}{{2\sqrt {\left( {a - x} \right)\left( {x - b} \right)} }}$$
Answer :   $$\frac{{2x - a - b}}{{2\sqrt {a - x} \sqrt {x - b} }}$$

69. Let $$f\left( x \right)$$  be differentiable on the interval $$\left( {0,\,\infty } \right)$$  such that $$f\left( 1 \right) = 1,$$   and $$\mathop {\lim }\limits_{t \to x} \frac{{{t^2}f\left( x \right) - {x^2}f\left( t \right)}}{{t - x}} = 1$$      for each $$x > 0.$$   Then $$f\left( x \right)$$  is-

A $$\frac{1}{{3x}} + \frac{{2{x^2}}}{3}$$
B $$\frac{{ - 1}}{{3x}} + \frac{{4{x^2}}}{3}$$
C $$\frac{{ - 1}}{x} + \frac{2}{{{x^2}}}$$
D $$\frac{1}{x}$$
Answer :   $$\frac{1}{{3x}} + \frac{{2{x^2}}}{3}$$

70. If $$f\left( a \right) = 2,\,f'\left( a \right) = 1,\,g\left( a \right) = - 1,\,g'\left( a \right) = 2,$$         then the value of $$\mathop {\lim }\limits_{x \to a} \frac{{g\left( x \right)f\left( a \right) - g\left( a \right)f\left( x \right)}}{{x - a}}$$      is-

A $$-5$$
B $$\frac{1}{5}$$
C $$5$$
D none of these
Answer :   $$5$$