Differentiability and Differentiation MCQ Questions & Answers in Calculus | Maths
Learn Differentiability and Differentiation MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.
61.
If $$y = {\log ^n}x,$$ where $${\log ^n}$$ means $$\log \,\log \,\log .....$$ (repeated $$n$$ time), then $$x\,\log \,x\,\log \,x\,{\log ^2}x\,{\log ^3}x.....{\log ^{n - 1}}x\,{\log ^n}x\frac{{dy}}{{dx}}$$ is equal to :
64.
If $$f$$ is a real valued differentiable function satisfying $$\left| {f\left( x \right) - f\left( y \right)} \right| \leqslant {\left( {x - y} \right)^2},\,x,\,y\, \in \,R$$ and $$f\left( 0 \right) = 0,$$ then $$f\left( 1 \right)$$ equals-
65.
Let $$f:\left[ {2,\,7} \right] \to \left[ {0,\,\infty } \right)$$ be a continuous and differentiable function. Then, $$\left( {f\left( 7 \right) - f\left( 2 \right)} \right)\frac{{{{\left( {f\left( 7 \right)} \right)}^2} + {{\left( {f\left( 2 \right)} \right)}^2} + f\left( 2 \right)f\left( 7 \right)}}{3}$$ where $$c\, \in \left[ {2,\,7} \right].$$
A
$$5{f^2}\left( c \right)f'\left( c \right)$$
B
$$5f'\left( c \right)$$
C
$$f\left( c \right)f'\left( c \right)$$
D
none of these
Answer :
$$5{f^2}\left( c \right)f'\left( c \right)$$
$$\eqalign{
& {\text{Let }}g\left( x \right) = {f^3}\left( x \right) \cr
& \Rightarrow g'\left( x \right) = 3{f^2}\left( x \right).f'\left( x \right) \cr
& \because \,f:\left[ {2,\,7} \right] \to \left[ {0,\,\infty } \right) \Rightarrow g:\left[ {2,\,7} \right] \to \left[ {0,\,\infty } \right) \cr} $$
Using Lagrange's mean value theorem on $$g\left( x \right),$$ we get $$g'\left( c \right) = \frac{{g\left( 7 \right) - g\left( 2 \right)}}{5},\,c\, \in \left[ {2,\,7} \right]$$
$$ \Rightarrow 2{f^2}\left( c \right)f'\left( c \right) = \left( {f\left( 7 \right) - f\left( 2 \right)} \right)\frac{{{{\left( {f\left( 7 \right)} \right)}^2} + {{\left( {f\left( 2 \right)} \right)}^2} + f\left( 2 \right)f\left( 7 \right)}}{3}$$
66.
If $$f\left( x \right) = \root 3 \of {\frac{{{x^4}}}{{\left| x \right|}}} ,\,x \ne 0$$ and $$f\left( 0 \right) = 0$$ is :
A
continuous for all $$x$$ but not differentiable for any $$x$$
B
continuous and differentiable for any $$x$$
C
continuous for all $$x$$ and differentiable for all $$x \ne 0$$
D
continuous and differentiable for all $$x \ne 0$$
Answer :
continuous for all $$x$$ and differentiable for all $$x \ne 0$$
$$\eqalign{
& f\left( x \right) = \root 3 \of {\frac{{{x^4}}}{{\left| x \right|}}} ,\,x \ne 0,\,f\left( 0 \right) = 0 \cr
& \therefore \,f\left( x \right) = \root 3 \of {\frac{{{x^4}}}{{ - x}}} = \root 3 \of {{ - x^3}} = - x{\text{ if }}x < 0 \cr
& \& \,f\left( x \right) = \root 3 \of {\frac{{{x^4}}}{x}} = \root 3 \of {{x^3}} = x{\text{ if }}x > 0 \cr} $$
\[f\left( x \right) = \left\{ \begin{array}{l}
- x,{\rm{ \,if\, }}x < 0\\
\,\,\,\,\,0,{\rm{ \,if\, }}x = 0\\
\,\,\,\,\,x,{\rm{ \,if\, }}x > 0\,\,
\end{array} \right.\]
Clearly $$f\left( x \right)$$ is continuous for all $$x$$ but not differentiable at $$x = 0$$
67.
Let $$f\left( x \right) = 15 - \left| {x - 10} \right|\,;\,x\,R.$$ Then the set of all values of $$x,$$ at which the function, $$g\left( x \right) = f\left( {f\left( x \right)} \right)$$ is not differentiable, is:
A
$$\left\{ {5,\,10,\,15} \right\}$$
B
$$\left\{ {10,\,15} \right\}$$
C
$$\left\{ {5,\,10,\,15,\,20} \right\}$$
D
$$\left\{ {10} \right\}$$
Answer :
$$\left\{ {5,\,10,\,15} \right\}$$
$$\eqalign{
& {\text{Since, }}f\left( x \right) = 15 - \left| {\left( {10 - x} \right)} \right| \cr
& \therefore g\left( x \right) = f\left( {f\left( x \right)} \right) = 15 - \left| {10 - \left[ {15 - \left| {10 - x} \right|} \right]} \right| \cr
& = 15 - \left| {\left| {10 - x} \right| - 5} \right| \cr} $$
$$\therefore $$ Then, the points where function $$g\left( x \right)$$ is
Non-differentiable are
$$\eqalign{
& 10 - x = 0\,\,{\text{and }}\left| {10 - x} \right| = 5 \cr
& \Rightarrow x = 10\,\,{\text{and }}x - 10 = \pm 5 \cr
& \Rightarrow x = 10\,\,{\text{and }}x = 15,\,5 \cr} $$
68.
If $$y = \frac{{\left( {a - x} \right)\sqrt {a - x} - \left( {b - x} \right)\sqrt {x - b} }}{{\sqrt {a - x} + \sqrt {x - b} }},$$ then $$\frac{{dy}}{{dx}}$$ wherever it is defined is :
69.
Let $$f\left( x \right)$$ be differentiable on the interval $$\left( {0,\,\infty } \right)$$ such that $$f\left( 1 \right) = 1,$$ and $$\mathop {\lim }\limits_{t \to x} \frac{{{t^2}f\left( x \right) - {x^2}f\left( t \right)}}{{t - x}} = 1$$ for each $$x > 0.$$ Then $$f\left( x \right)$$ is-
A
$$\frac{1}{{3x}} + \frac{{2{x^2}}}{3}$$
B
$$\frac{{ - 1}}{{3x}} + \frac{{4{x^2}}}{3}$$
C
$$\frac{{ - 1}}{x} + \frac{2}{{{x^2}}}$$
D
$$\frac{1}{x}$$
Answer :
$$\frac{1}{{3x}} + \frac{{2{x^2}}}{3}$$
Given that $$f\left( x \right)$$ is differentiable on $$\left( {0,\,\infty } \right)$$ with
$$f\left( 1 \right) = 1\,{\text{and}}\mathop {\lim }\limits_{t \to x} \frac{{{t^2}f\left( x \right) - {x^2}f\left( t \right)}}{{t - x}} = 1$$ for each $$x>0$$
$$\eqalign{
& \Rightarrow \mathop {\lim }\limits_{t \to x} \frac{{2t\,f\left( x \right) - {x^2}f'\left( t \right)}}{1} = 1\,\,\left[ {{\text{using L'Hospital rule}}} \right] \cr
& \Rightarrow 2x\,f\left( x \right) - {x^2}\,f'\left( x \right) = 1 \cr
& \Rightarrow f'\left( x \right) - \frac{2}{x}f\left( x \right) = - \frac{1}{{{x^2}}}\left[ {{\text{Linear differential equation}}} \right] \cr} $$
Integrating factor
$$\eqalign{
& {e^{\int { - \,\frac{2}{x}dx} }} = {e^{ - 2\,\log \,x}} = {e^{\log \frac{1}{{{x^2}}}}} = \frac{1}{{{x^2}}} \cr
& \therefore \,\,{\text{Solution is}}\,f\left( x \right) \times \frac{1}{{{x^2}}} = \int {\left( { - \frac{1}{{{x^2}}}} \right) \times \frac{1}{{{x^2}}}dx} \cr
& \Rightarrow \frac{{f\left( x \right)}}{{{x^2}}} = \frac{1}{{3{x^3}}} + C \cr
& \Rightarrow f\left( x \right) = C{x^2} + \frac{1}{{3x}} \cr
& {\text{Also }}f\left( 1 \right) = 1 \cr
& \Rightarrow 1 = C + \frac{1}{3} \cr
& \Rightarrow C = \frac{2}{3} \cr
& \therefore f\left( x \right) = \frac{2}{3}{x^2} + \frac{1}{{3x}} \cr} $$
70.
If $$f\left( a \right) = 2,\,f'\left( a \right) = 1,\,g\left( a \right) = - 1,\,g'\left( a \right) = 2,$$ then the value of $$\mathop {\lim }\limits_{x \to a} \frac{{g\left( x \right)f\left( a \right) - g\left( a \right)f\left( x \right)}}{{x - a}}$$ is-
A
$$-5$$
B
$$\frac{1}{5}$$
C
$$5$$
D
none of these
Answer :
$$5$$
$$\eqalign{
& \mathop {\lim }\limits_{x \to a} \frac{{g\left( x \right)f\left( a \right) - g\left( a \right)f\left( x \right)}}{{x - a}} \cr
& = \mathop {\lim }\limits_{h \to 0} \frac{{g\left( {a + h} \right)f\left( a \right) - g\left( a \right)f\left( {a + h} \right)}}{h}\left[ {{\text{For }}x = a + h} \right] \cr
& = \mathop {\lim }\limits_{h \to 0} \frac{{g\left( {a + h} \right)f\left( a \right) - g\left( a \right)f\left( a \right) + g\left( a \right)f\left( a \right) - g\left( a \right)f\left( {a + h} \right)}}{h} \cr
& = \mathop {\lim }\limits_{h \to 0} f\left( a \right)\left[ {\frac{{g\left( {a + h} \right) - g\left( a \right)}}{h}} \right] - \mathop {\lim }\limits_{h \to 0} g\left( a \right)\left[ {\frac{{f\left( {a + h} \right) - f\left( a \right)}}{h}} \right] \cr
& = f\left( a \right)g'\left( a \right) - g\left( a \right)f'\left( a \right) \cr
& = 2 \times 2 - \left( { - 1} \right) \times 1 \cr
& = 5 \cr} $$