Differentiability and Differentiation MCQ Questions & Answers in Calculus | Maths

Learn Differentiability and Differentiation MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

71. If $$f\left( x \right) = \frac{{\left[ x \right]}}{{\left| x \right|}},\,x \ne 0$$     where $$\left[ \cdot \right]$$ denotes the greatest integer function, then $$f'\left( 1 \right)$$  is :

A $$-1$$
B $$\infty $$
C nonexistent
D none of these
Answer :   nonexistent

72. If $$t\left( {1 + {x^2}} \right) = x$$   and $${x^2} + {t^2} = y$$   then $$\frac{{dy}}{{dx}}$$  at $$x=2$$  is :

A $$\frac{{88}}{{125}}$$
B $$\frac{{488}}{{125}}$$
C 1
D none of these
Answer :   $$\frac{{488}}{{125}}$$

73. There exists a function $$f\left( x \right)$$  satisfying $$f\left( 0 \right) = 1,\,f'\left( 0 \right) - 1,\,f\left( x \right) > 0$$       for all $$x$$ and

A $$f'\left( x \right) < 0$$   for all $$x$$
B $$ - 1 < f''\left( x \right) < 0$$    for all $$x$$
C $$ - 2 \leqslant f''\left( x \right) \leqslant - 1$$    for all $$x$$
D $$f''\left( x \right) \leqslant - 2$$   for all $$x$$
Answer :   $$f'\left( x \right) < 0$$   for all $$x$$

74. The number of points of non-differentiability for $$f\left( x \right) = \max \left\{ {\left| {\left| x \right| - 1} \right|,\,\frac{1}{2}} \right\}$$      is :

A 4
B 3
C 2
D 5
Answer :   5

75. If $$f'\left( x \right) = \sqrt {2{x^2} - 1} $$    and $$y = f\left( {{x^2}} \right)$$   then $$\frac{{dy}}{{dx}}$$  at $$x=1$$  is :

A 2
B 1
C $$-2$$
D none of these
Answer :   2

76. $$\mathop {\lim }\limits_{h \to 0} \frac{{f\left( {2h + 2 + {h^2}} \right) - f\left( 2 \right)}}{{f\left( {h - {h^2} + 1} \right) - f\left( 1 \right)}},$$      given that $$f'\left( 2 \right) = 6$$   and $$f'\left( 1 \right) = 4$$

A does not exist
B is equal to $$ - \frac{3}{2}$$
C is equal to $$\frac{3}{2}$$
D is equal to $$3$$
Answer :   is equal to $$3$$

77. Let $$f:R \to R$$   be a function defined by $$f\left( x \right) = \min \left\{ {x + 1,\,\left| x \right| + 1} \right\}.$$      Then which of the following is true ?

A $$f\left( x \right)$$  is differentiable everywhere
B $$f\left( x \right)$$  is not differentiable at $$x = 0$$
C $$f\left( x \right) \geqslant 1$$   for all $$x\, \in \,R$$
D $$f\left( x \right)$$  is not differentiable at $$x = 1$$
Answer :   $$f\left( x \right)$$  is differentiable everywhere

78. Solve this : $$\frac{{{d^n}}}{{d{x^n}}}\left( {\log \,x} \right) = ?$$

A $$\frac{{\left( {n - 1} \right)!}}{{{x^n}}}$$
B $$\frac{{n!}}{{{x^n}}}$$
C $$\frac{{\left( {n - 2} \right)!}}{{{x^n}}}$$
D $${\left( { - 1} \right)^{n - 1}}\frac{{\left( {n - 1} \right)!}}{{{x^n}}}$$
Answer :   $${\left( { - 1} \right)^{n - 1}}\frac{{\left( {n - 1} \right)!}}{{{x^n}}}$$

79. Let $$f$$ be a function which is continuous and differentiable for all real $$x.$$ If $$f\left( 2 \right) = - 4$$   and $$f'\left( x \right) \geqslant 6$$   for all $$x\, \in \left[ {2,\,4} \right],$$   then :

A $$f\left( 4 \right) < 8$$
B $$f\left( 4 \right) \geqslant 8$$
C $$f\left( 4 \right) \geqslant 12$$
D none of these
Answer :   $$f\left( 4 \right) \geqslant 8$$

80. Suppose $$f\left( x \right)$$  is differentiable at $$x = 1$$  and $$\mathop {\lim }\limits_{h \to 0} \frac{1}{h}f\left( {1 + h} \right) = 5,$$     then $$f'\left( 1 \right)$$  equals :

A $$3$$
B $$4$$
C $$5$$
D $$6$$
Answer :   $$5$$