Differentiability and Differentiation MCQ Questions & Answers in Calculus | Maths
Learn Differentiability and Differentiation MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.
71.
If $$f\left( x \right) = \frac{{\left[ x \right]}}{{\left| x \right|}},\,x \ne 0$$ where $$\left[ \cdot \right]$$ denotes the greatest integer function, then $$f'\left( 1 \right)$$ is :
72.
If $$t\left( {1 + {x^2}} \right) = x$$ and $${x^2} + {t^2} = y$$ then $$\frac{{dy}}{{dx}}$$ at $$x=2$$ is :
A
$$\frac{{88}}{{125}}$$
B
$$\frac{{488}}{{125}}$$
C
1
D
none of these
Answer :
$$\frac{{488}}{{125}}$$
$$\eqalign{
& {x^2} + {t^2} = y \cr
& \Rightarrow \frac{{dy}}{{dx}} = 2x + 2t.\frac{{dt}}{{dx}}......\left( 1 \right) \cr
& {\text{As }}t = \frac{x}{{1 + {x^2}}} \Rightarrow \frac{{dt}}{{dx}} = \frac{{1 - {x^2}}}{{{{\left( {1 + {x^2}} \right)}^2}}} \cr
& {\text{Substitute these value of }}t{\text{ and }}\frac{{dt}}{{dx}}{\text{ in }}\left( 1 \right){\text{, we get}} \cr
& \frac{{dy}}{{dx}} = 2x + \frac{{2x}}{{1 + {x^2}}}.\frac{{1 - {x^2}}}{{{{\left( {1 + {x^2}} \right)}^2}}} \cr
& {\text{On putting }}x = 2{\text{ in }}\frac{{dy}}{{dx}},{\text{ we get}} \cr
& \frac{{dy}}{{dx}} = \frac{{488}}{{125}} \cr} $$
73.
There exists a function $$f\left( x \right)$$ satisfying $$f\left( 0 \right) = 1,\,f'\left( 0 \right) - 1,\,f\left( x \right) > 0$$ for all $$x$$ and
A
$$f'\left( x \right) < 0$$ for all $$x$$
B
$$ - 1 < f''\left( x \right) < 0$$ for all $$x$$
C
$$ - 2 \leqslant f''\left( x \right) \leqslant - 1$$ for all $$x$$
D
$$f''\left( x \right) \leqslant - 2$$ for all $$x$$
Answer :
$$f'\left( x \right) < 0$$ for all $$x$$
$$f\left( x \right) = {e^{ - x}}$$ satisfies $$f\left( 0 \right) = 1,\,f'\left( 0 \right) = - 1,\,f\left( x \right) > 0$$
It also satisfies $$f'\left( x \right) < 0$$ for all $$x.$$
74.
The number of points of non-differentiability for $$f\left( x \right) = \max \left\{ {\left| {\left| x \right| - 1} \right|,\,\frac{1}{2}} \right\}$$ is :
A
4
B
3
C
2
D
5
Answer :
5
Clearly, from the graph, $$f\left( x \right)$$ is non-differentiable at five points.
75.
If $$f'\left( x \right) = \sqrt {2{x^2} - 1} $$ and $$y = f\left( {{x^2}} \right)$$ then $$\frac{{dy}}{{dx}}$$ at $$x=1$$ is :
77.
Let $$f:R \to R$$ be a function defined by $$f\left( x \right) = \min \left\{ {x + 1,\,\left| x \right| + 1} \right\}.$$ Then which of the following is true ?
A
$$f\left( x \right)$$ is differentiable everywhere
B
$$f\left( x \right)$$ is not differentiable at $$x = 0$$
C
$$f\left( x \right) \geqslant 1$$ for all $$x\, \in \,R$$
D
$$f\left( x \right)$$ is not differentiable at $$x = 1$$
Answer :
$$f\left( x \right)$$ is differentiable everywhere
$$\eqalign{
& f\left( x \right) = \min \left\{ {x + 1,\,\left| x \right| + 1} \right\} \cr
& \Rightarrow f\left( x \right) = x + 1\,\forall \,x\, \in \,R \cr} $$
Hence, $$f\left( x \right)$$ is differentiable everywhere for all $$x\, \in \,R.$$
78.
Solve this : $$\frac{{{d^n}}}{{d{x^n}}}\left( {\log \,x} \right) = ?$$
79.
Let $$f$$ be a function which is continuous and differentiable for all real $$x.$$ If $$f\left( 2 \right) = - 4$$ and $$f'\left( x \right) \geqslant 6$$ for all $$x\, \in \left[ {2,\,4} \right],$$ then :
A
$$f\left( 4 \right) < 8$$
B
$$f\left( 4 \right) \geqslant 8$$
C
$$f\left( 4 \right) \geqslant 12$$
D
none of these
Answer :
$$f\left( 4 \right) \geqslant 8$$
By mean value theorem, there exists a real number $$c\, \in \left( {2,\,4} \right)$$ such that
$$\eqalign{
& f'\left( c \right) = \frac{{f\left( 4 \right) - f\left( 2 \right)}}{{4 - 2}} \cr
& \Rightarrow f'\left( c \right) = \frac{{f\left( 4 \right) + 4}}{2} \cr
& {\text{Since, }}f'\left( c \right) \geqslant 6,\,\forall \,x\, \in \left[ {2,\,4} \right] \cr
& \therefore \,f'\left( c \right) \geqslant 6 \cr
& \Rightarrow \frac{{f\left( 4 \right) + 4}}{2} \geqslant 6 \cr
& \Rightarrow f\left( 4 \right) + 4 \geqslant 12 \cr
& \Rightarrow f\left( 4 \right) \geqslant 8 \cr} $$
80.
Suppose $$f\left( x \right)$$ is differentiable at $$x = 1$$ and $$\mathop {\lim }\limits_{h \to 0} \frac{1}{h}f\left( {1 + h} \right) = 5,$$ then $$f'\left( 1 \right)$$ equals :
A
$$3$$
B
$$4$$
C
$$5$$
D
$$6$$
Answer :
$$5$$
$$f'\left( 1 \right) = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {1 + h} \right) - f\left( 1 \right)}}{h}\,;$$
As function is differentiable so it is continuous as it is given that $$\mathop {\lim }\limits_{h \to 0} \frac{{f\left( {1 + h} \right)}}{h} = 5$$ and hence $$f\left( 1 \right) = 0$$
Hence, $$f'\left( 1 \right) = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {1 + h} \right)}}{h} = 5$$