Differentiability and Differentiation MCQ Questions & Answers in Calculus | Maths
Learn Differentiability and Differentiation MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.
81.
Suppose $$f\left( x \right) = {e^{ax}} + {e^{bx}},$$ where $$a \ne b,$$ and that $$f''\left( x \right) - 2f'\left( x \right) - 15f\left( x \right) = 0$$ for all $$x.$$ Then the product $$ab$$ is :
86.
If $$f''\left( x \right) = - f\left( x \right)$$ and $$g\left( x \right) = f'\left( x \right)$$ and $$F\left( x \right) = {\left( {f\left( {\frac{x}{2}} \right)} \right)^2} + {\left( {g\left( {\frac{x}{2}} \right)} \right)^2}$$ and given that $$F\left( 5 \right) = 5,$$ then $$F\left( {10} \right)$$ is equal to :
A
5
B
10
C
0
D
15
Answer :
5
$$\eqalign{
& F'\left( x \right) = \left[ {f\left( {\frac{x}{2}} \right).f'\left( {\frac{x}{2}} \right) + g\left( {\frac{x}{2}} \right).g'\left( {\frac{x}{2}} \right)} \right] \cr
& {\text{Here, }}g\left( x \right) = f'\left( x \right){\text{ and }}g'\left( x \right) = f''\left( x \right) = - f\left( x \right) \cr
& {\text{So, }}F'\left( x \right) = f\left( {\frac{x}{2}} \right).g\left( {\frac{x}{2}} \right) - f\left( {\frac{x}{2}} \right).g\left( {\frac{x}{2}} \right) = 0 \cr
& \Rightarrow \,F\left( x \right){\text{ is constant function}} \cr
& {\text{So, }}F\left( {10} \right) = 5 \cr} $$
87.
If $$f\left( x \right) = \left| {1 - x} \right|,$$ then the points where $${\sin ^{ - 1}}\left( {f\left| x \right|} \right)$$ is non-differentiable are :
A
$$\left\{ {0,\,1} \right\}$$
B
$$\left\{ {0,\, - 1} \right\}$$
C
$$\left\{ {0,\,1,\, - 1} \right\}$$
D
none of these
Answer :
$$\left\{ {0,\,1,\, - 1} \right\}$$
Given that $$f\left( x \right) = \left| {1 - x} \right|$$
\[\therefore \,f\left( {\left| x \right|} \right) = \left\{ \begin{array}{l}
\,\,\,\,x - 1,\,\,\,\,\,\,\,\,\,\,\,\,x > 1\\
\,\,\,\,1 - x,\,\,\,\,\,\,\,\,0 < x \le 1\\
\,\,\,\,1 + x,\,\,\,\,\, - 1 \le x \le 0\\
- x - 1,\,\,\,\,\,\,\,\,\,\,x < - 1
\end{array} \right.\]
Clearly, the domain of $${\sin ^{ - 1}}\left( {f\left| x \right|} \right)$$ is $$\left[ { - 2,\,2} \right].$$
Therefore, it is non-differentiable at the points $$\left\{ { - 1,\,0,\,1} \right\}.$$
88.
If $$y = {\cos ^{ - 1}}\left( {\cos \,x} \right)$$ then $$\frac{{dy}}{{dx}}$$ at $$x = \frac{{5\pi }}{4}$$ is equal to :
A
1
B
$$-1$$
C
$$\frac{1}{{\sqrt 2 }}$$
D
none of these
Answer :
$$-1$$
$$y = {\cos ^{ - 1}}\cos \left( {\pi + \overline {x - \pi } } \right) = {\cos ^{ - 1}}\cos \left( {\pi - \overline {x - \pi } } \right).$$ When $$x$$ is around $$\frac{{5\pi }}{4},\,\pi - \overline {x - \pi } $$ is in the second quadrant. So, $$y = \pi - \left( {x - \pi } \right)\,;\,\,\,\,\,\,\therefore \,\,\frac{{dy}}{{dx}} = - 1$$
89.
If $${y^2} = P\left( x \right) = a$$ polynomial of degree 3 then $$2\frac{d}{{dx}}\left( {{y^3}\frac{{{d^2}y}}{{d{x^2}}}} \right)$$ equals :
A
$$P'''\left( x \right) + P'\left( x \right)$$
B
$$P''\left( x \right).P'''\left( x \right)$$
C
$$P\left( x \right).P'''\left( x \right)$$
D
none of these
Answer :
$$P\left( x \right).P'''\left( x \right)$$
$$\eqalign{
& {y^2} = P\left( x \right) \cr
& \Rightarrow 2y\frac{{dy}}{{dx}} = P'\left( x \right) \cr
& \Rightarrow 2{\left( {\frac{{dy}}{{dx}}} \right)^2} + 2y\frac{{{d^2}y}}{{d{x^2}}} = P''\left( x \right) \cr
& \therefore 2y = \frac{{{d^2}y}}{{d{x^2}}} = P''\left( x \right) - 2{\left( {\frac{{dy}}{{dx}}} \right)^2} \cr
& {\text{or,}}\,\,2{y^3}\frac{{{d^2}y}}{{d{x^2}}} = {y^2}P''\left( x \right) - 2{y^2}{\left( {\frac{{dy}}{{dx}}} \right)^2} \cr
& {\text{or,}}\,\,2{y^3}\frac{{{d^2}y}}{{d{x^2}}} = P\left( x \right).P''\left( x \right) - \frac{1}{2}{\left\{ {P'\left( x \right)} \right\}^2} \cr
& {\text{Differentiating w}}{\text{.r}}{\text{.t}}{\text{. }}x, \cr
& \,\,2\frac{d}{{dx}}\left( {{y^3}\frac{{{d^2}y}}{{d{x^2}}}} \right) \cr
& = P'\left( x \right).P''\left( x \right) + P\left( x \right).P'''\left( x \right) - P'\left( x \right).P''\left( x \right) \cr
& = P\left( x \right).P'''\left( x \right) \cr} $$
90.
If for all $$x,\,y$$ the function $$f$$ is defined by
$$f\left( x \right) + f\left( y \right) + f\left( x \right).f\left( y \right) = 1$$ and $$f\left( x \right) > 0$$ then :
A
$$f'\left( x \right)$$ does not exist
B
$$f'\left( x \right) = 0$$ for all $$x$$
C
$$f'\left( 0 \right) < f'\left( 1 \right)$$
D
none of these
Answer :
$$f'\left( x \right) = 0$$ for all $$x$$
$$\eqalign{
& {\text{Putting }}x = 0,\,y = 0,\,\,{\text{we get }}2f\left( 0 \right){\text{ + }}{\left\{ {f\left( 0 \right)} \right\}^2}{\text{ = 1}} \cr
& \Rightarrow f\left( 0 \right) = \sqrt 2 - 1\,\,\,\,\left\{ {\because \,f\left( 0 \right) > 0} \right\} \cr
& {\text{Putting }}y = x,\,\,\,2f\left( x \right) + {\left\{ {f\left( x \right)} \right\}^2} = 1 \cr
& {\text{Differentiating w}}{\text{.r}}{\text{.t}}{\text{. }}x,{\text{ }} \cr
& {\text{2}}f'\left( x \right) + 2f\left( x \right).f'\left( x \right) = 0\,\,\,\,\,{\text{or}},\,\,f'\left( x \right)\left\{ {1 + f\left( x \right)} \right\} = 0 \cr
& \Rightarrow f'\left( x \right) = 0,\,\,{\text{because }}f\left( x \right) > 0 \cr} $$