Differentiability and Differentiation MCQ Questions & Answers in Calculus | Maths

Learn Differentiability and Differentiation MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

81. Suppose $$f\left( x \right) = {e^{ax}} + {e^{bx}},$$    where $$a \ne b,$$  and that $$f''\left( x \right) - 2f'\left( x \right) - 15f\left( x \right) = 0$$       for all $$x.$$ Then the product $$ab$$   is :

A $$25$$
B $$9$$
C $$ - 15$$
D $$ - 9$$
Answer :   $$ - 15$$

82. Consider the function, $$f\left( x \right) = \left| {x - 2} \right| + \left| {x - 5} \right|,\,x \in \,R.$$
Statement-1 : $$f'\left( 4 \right) = 0$$
Statement-2 : $$f$$ is continuous in [2, 5], differentiable in (2, 5) and $$f\left( 2 \right) = f\left( 5 \right).$$

A Statement-1 is false, Statement-2 is true.
B Statement-1 is true, statement-2 is true; statement-2 is a correct explanation for Statement-1.
C Statement-1 is true, statement-2 is true; statement-2 is not a correct explanation for Statement-1.
D Statement-1 is true, statement-2 is false.
Answer :   Statement-1 is true, statement-2 is true; statement-2 is not a correct explanation for Statement-1.

83. If $$y = {\cot ^{ - 1}}\left[ {\frac{{\sqrt {1 + \sin \,x} + \sqrt {1 - \sin \,x} }}{{\sqrt {1 + \sin \,x} - \sqrt {1 - \sin \,x} }}} \right]$$        where $$0 < x < \frac{x}{2},$$   then $$\frac{{dy}}{{dx}}$$  is equal to :

A $$\frac{1}{2}$$
B $$2$$
C $$\sin \,x + \cos \,x$$
D $$\sin \,x - \cos \,x$$
Answer :   $$\frac{1}{2}$$

84. If $$y = \sin \,2x$$   then $$\frac{{{d^6}y}}{{d{x^6}}}$$  at $$x = \frac{\pi }{2}$$  is equal to :

A $$-64$$
B $$0$$
C $$64$$
D none of these
Answer :   $$0$$

85. If $$y = {\left( {1 + \frac{1}{x}} \right)^x}$$   then $$\frac{{2\sqrt {{y_2}\left( 2 \right) + \frac{1}{8}} }}{{\left( {\log \frac{3}{2} - \frac{1}{3}} \right)}}$$    is equal to -

A 3
B 4
C 1
D 2
Answer :   3

86. If $$f''\left( x \right) = - f\left( x \right)$$    and $$g\left( x \right) = f'\left( x \right)$$   and $$F\left( x \right) = {\left( {f\left( {\frac{x}{2}} \right)} \right)^2} + {\left( {g\left( {\frac{x}{2}} \right)} \right)^2}$$      and given that $$F\left( 5 \right) = 5,$$   then $$F\left( {10} \right)$$  is equal to :

A 5
B 10
C 0
D 15
Answer :   5

87. If $$f\left( x \right) = \left| {1 - x} \right|,$$   then the points where $${\sin ^{ - 1}}\left( {f\left| x \right|} \right)$$   is non-differentiable are :

A $$\left\{ {0,\,1} \right\}$$
B $$\left\{ {0,\, - 1} \right\}$$
C $$\left\{ {0,\,1,\, - 1} \right\}$$
D none of these
Answer :   $$\left\{ {0,\,1,\, - 1} \right\}$$

88. If $$y = {\cos ^{ - 1}}\left( {\cos \,x} \right)$$    then $$\frac{{dy}}{{dx}}$$  at $$x = \frac{{5\pi }}{4}$$  is equal to :

A 1
B $$-1$$
C $$\frac{1}{{\sqrt 2 }}$$
D none of these
Answer :   $$-1$$

89. If $${y^2} = P\left( x \right) = a$$    polynomial of degree 3 then $$2\frac{d}{{dx}}\left( {{y^3}\frac{{{d^2}y}}{{d{x^2}}}} \right)$$   equals :

A $$P'''\left( x \right) + P'\left( x \right)$$
B $$P''\left( x \right).P'''\left( x \right)$$
C $$P\left( x \right).P'''\left( x \right)$$
D none of these
Answer :   $$P\left( x \right).P'''\left( x \right)$$

90. If for all $$x,\,y$$  the function $$f$$ is defined by
$$f\left( x \right) + f\left( y \right) + f\left( x \right).f\left( y \right) = 1$$       and $$f\left( x \right) > 0$$   then :

A $$f'\left( x \right)$$  does not exist
B $$f'\left( x \right) = 0$$   for all $$x$$
C $$f'\left( 0 \right) < f'\left( 1 \right)$$
D none of these
Answer :   $$f'\left( x \right) = 0$$   for all $$x$$