Sets and Relations MCQ Questions & Answers in Calculus | Maths
Learn Sets and Relations MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.
31.
If $$f\left( x \right) = \sqrt {3\left| x \right| - x - 2} $$ and $$g\left( x \right) = \sin \,x,$$ then domain of definition of $$fog\left( x \right)$$ is :
A
$$\left\{ {2n\pi + \frac{\pi }{2}} \right\},\,n\, \in \,I$$
For $$\left( {fog} \right)\left( x \right)$$ to exists range of $$g \subseteq $$ domain of $$f.$$
$$\eqalign{
& \therefore \,{\text{Domain of }}f \Rightarrow 3\left| x \right| - x - 2 \geqslant 0 \cr
& \Rightarrow 3\left| x \right| - x \geqslant 2 \cr
& {\text{When }}x \geqslant 0 \Rightarrow x \geqslant 1 \cr
& {\text{When}}\,x < 0 \Rightarrow x < - \frac{1}{2} \cr
& \therefore \,\sin \,x \geqslant 1{\text{ and }}\sin \,x < - \frac{1}{2}{\text{ for }}f\left\{ {g\left( x \right)} \right\}{\text{ to exists}}{\text{.}} \cr
& {\text{i}}{\text{.e}}{\text{., }}\sin \,x = 1{\text{ and }} - 1 \leqslant \sin \,x < - \frac{1}{2} \cr
& \therefore \,x = \left( {4m + 1} \right)\frac{\pi }{2}{\text{ and }}2n\pi + \frac{{7\pi }}{6} \leqslant x \leqslant 2n\pi + \frac{{11\pi }}{6} \cr
& {\text{i}}{\text{.e}}{\text{., }}\left\{ {\left( {4m + 1} \right)\frac{\pi }{2}:m\, \in \,I} \right\}\mathop \cup \limits_{n\, \in \,I} \left[ {2n\pi + \frac{{7\pi }}{6} \leqslant x \leqslant \,2n\pi + \frac{{11\pi }}{6}} \right] \cr} $$
32.
Let r be a relation over the set $$N \times N$$ and it is defined by $$\left( {a,\,b} \right)\,r\,\left( {c,\,d} \right) \Rightarrow a + d = b + c.$$ Then $$r$$ is :
A
reflexive only
B
symmetric only
C
transitive only
D
an equivalence relation
Answer :
an equivalence relation
$$\left( {a,\,b} \right)\,r\,\left( {a,\,b} \right)$$ because $$a+b=b+a.$$
So, $$r$$ is reflexive.
$$\left( {a,\,b} \right)\,r\,\left( {c,\,d} \right) \Rightarrow a + d = b + c \Rightarrow c + b = d + a \Rightarrow \left( {c,\,d} \right)\,r\,\left( {a,\,b} \right)$$
So, $$r$$ is symmetric.
$$\left( {a,\,b} \right)\,r\,\left( {c,\,d} \right)$$ and $$\left( {c,\,d} \right)\,r\,\left( {e,\,f} \right) \Rightarrow a + d = b + c,\,\,c + f = d + e$$
Adding, $$a + d + c + f = b + c + d + e \Rightarrow a + f = b + e \Rightarrow \left( {a,\,b} \right)\,r\,\left( {e,\,f} \right)$$
$$\therefore \,r$$ is transitive.
33.
Let $$A = \left\{ {1,\,2,\,3} \right\}.$$ The total number of distinct relations that can be defined over $$A$$ is :
A
$${2^9}$$
B
6
C
8
D
none of these
Answer :
$${2^9}$$
$$n\left( {A \times A} \right) = n\left( A \right).n\left( A \right) = {3^2} = 9.$$ So, the total number of subsets of $${A \times A}$$ is $${2^9}$$ and a subset of $${A \times A}$$ is a relation over the set $$A.$$
34.
$$\eqalign{
& {\text{Let }}R = \left\{ {x|x\, \in \,N,\,x{\text{ is a multiple of 3 and }}x \leqslant 100} \right\} \cr
& \,\,\,\,\,\,\,\,\,\,S = \left\{ {x|x\, \in \,N,\,x{\text{ is a multiple of 5 and }}x \leqslant 100} \right\} \cr} $$
What is the number of elements in $$\left( {R \times S} \right) \cap \left( {S \times R} \right)$$
A
36
B
33
C
20
D
6
Answer :
36
$$\eqalign{
& {\text{Let }}R = \left\{ {x:x\, \in \,N,\,x{\text{ is a multiple of 3 and }}x \leqslant 100} \right\} \cr
& {\text{and}}\,S = \left\{ {x:x\, \in \,N,\,x{\text{ is a multiple of 5 and }}x \leqslant 100} \right\} \cr
& \therefore \,R = \left\{ {3,\,6,\,9,\,12,\,15,\,.....,\,99} \right\} \cr
& {\text{and}}\,S = \left\{ {5,\,10,\,15,.....,95,\,100} \right\} \cr
& {\text{Now, }}\left( {R \times S} \right) \cap \left( {S \times R} \right) \cr
& = \left( {R \cap S} \right) \times \left( {S \cap R} \right) \cr
& = \left( {15,\,30,\,45,\,60,\,75,\,90} \right) \times \left( {15,\,30,\,45,\,60,\,75,\,90} \right) \cr
& \therefore {\text{ Number of elements in }}\left( {R \times S} \right) \cap \left( {S \times R} \right) = 6 \times 6 = 36 \cr} $$
35.
Let $$n\left( U \right) = 700,\,n\left( A \right) = 200,\,n\left( B \right) = 300,\,n\left( {A \cap B} \right) = 100,$$ then $$n\left( {A' \cap B'} \right)$$ is equal to :
38.
The number of bijective functions from a set $$A$$ to itself when $$A$$ contains 106 elements, is :
A
$$106$$
B
$${\left( {106} \right)^2}$$
C
$$\left( {106} \right)!$$
D
$${2^{106}}$$
Answer :
$$\left( {106} \right)!$$
The total number of bijective functions from a set $$A$$ containing 106 elements to itself is $$\left( {106} \right)!$$
39.
The number of elements in the set $$\left\{ {\left( {a,\,b} \right):2{a^2} + 3{b^2} = 35,\,a,\,b\, \in \,Z} \right\},$$ where $$Z$$ is the set of all integers, is :