Sets and Relations MCQ Questions & Answers in Calculus | Maths

Learn Sets and Relations MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

31. If $$f\left( x \right) = \sqrt {3\left| x \right| - x - 2} $$     and $$g\left( x \right) = \sin \,x,$$    then domain of definition of $$fog\left( x \right)$$  is :

A $$\left\{ {2n\pi + \frac{\pi }{2}} \right\},\,n\, \in \,I$$
B $$\mathop \cup \limits_{n\, \in \,I} \left\{ {2n\pi + \frac{{7\pi }}{6},\,2n\pi + \frac{{11\pi }}{6}} \right\}$$
C $$\left\{ {2n\pi + \frac{{7\pi }}{6}} \right\},\,n\, \in \,I$$
D $$\left\{ {\left( {4m + 1} \right)\frac{\pi }{2}:m\, \in \,I} \right\}\mathop \cup \limits_{n\, \in \,I} \left[ {2n\pi + \frac{{7\pi }}{6},\,2n\pi + \frac{{11\pi }}{6}} \right]$$
Answer :   $$\left\{ {\left( {4m + 1} \right)\frac{\pi }{2}:m\, \in \,I} \right\}\mathop \cup \limits_{n\, \in \,I} \left[ {2n\pi + \frac{{7\pi }}{6},\,2n\pi + \frac{{11\pi }}{6}} \right]$$

32. Let r be a relation over the set $$N \times N$$  and it is defined by $$\left( {a,\,b} \right)\,r\,\left( {c,\,d} \right) \Rightarrow a + d = b + c.$$       Then $$r$$ is :

A reflexive only
B symmetric only
C transitive only
D an equivalence relation
Answer :   an equivalence relation

33. Let $$A = \left\{ {1,\,2,\,3} \right\}.$$   The total number of distinct relations that can be defined over $$A$$ is :

A $${2^9}$$
B 6
C 8
D none of these
Answer :   $${2^9}$$

34. $$\eqalign{ & {\text{Let }}R = \left\{ {x|x\, \in \,N,\,x{\text{ is a multiple of 3 and }}x \leqslant 100} \right\} \cr & \,\,\,\,\,\,\,\,\,\,S = \left\{ {x|x\, \in \,N,\,x{\text{ is a multiple of 5 and }}x \leqslant 100} \right\} \cr} $$
What is the number of elements in $$\left( {R \times S} \right) \cap \left( {S \times R} \right)$$

A 36
B 33
C 20
D 6
Answer :   36

35. Let $$n\left( U \right) = 700,\,n\left( A \right) = 200,\,n\left( B \right) = 300,\,n\left( {A \cap B} \right) = 100,$$           then $$n\left( {A' \cap B'} \right)$$   is equal to :

A $$400$$
B $$600$$
C $$300$$
D None of these
Answer :   $$300$$

36. If $$f\left( x \right) = 5\,{\log _5}x$$    then $${f^{ - 1}}\left( {\alpha - \beta } \right)$$   where $$\alpha ,\,\beta \, \in \,R$$   is equal to :

A $${f^{ - 1}}\left( \alpha \right) - {f^{ - 1}}\left( \beta \right)$$
B $$\frac{{{f^{ - 1}}\left( \alpha \right)}}{{{f^{ - 1}}\left( \beta \right)}}$$
C $$\frac{1}{{f\left( {\alpha - \beta } \right)}}$$
D $$\frac{1}{{f\left( \alpha \right) - f\left( \beta \right)}}$$
Answer :   $$\frac{{{f^{ - 1}}\left( \alpha \right)}}{{{f^{ - 1}}\left( \beta \right)}}$$

37. If $$X$$ and $$Y$$ are two sets, then $$X \cap {\left( {X \cup Y} \right)^c}$$   equals.

A $$X$$
B $$Y$$
C $$\phi $$
D None of these
Answer :   $$\phi $$

38. The number of bijective functions from a set $$A$$ to itself when $$A$$ contains 106 elements, is :

A $$106$$
B $${\left( {106} \right)^2}$$
C $$\left( {106} \right)!$$
D $${2^{106}}$$
Answer :   $$\left( {106} \right)!$$

39. The number of elements in the set $$\left\{ {\left( {a,\,b} \right):2{a^2} + 3{b^2} = 35,\,a,\,b\, \in \,Z} \right\},$$        where $$Z$$ is the set of all integers, is :

A $$2$$
B $$4$$
C $$8$$
D $$12$$
Answer :   $$8$$

40. Let $$R$$ and $$S$$ be two non-void relations in a set $$A.$$ Which of the following statements is not true ?

A $$R$$ and $$S$$ transitive $$ \Rightarrow \,R \cup S$$   is transitive
B $$R$$ and $$S$$ transitive $$ \Rightarrow \,R \cap S$$   is transitive
C $$R$$ and $$S$$ symmetric $$ \Rightarrow \,R \cup S$$   is symmetric
D $$R$$ and $$S$$ reflexive $$ \Rightarrow \,R \cap S$$   is reflexive
Answer :   $$R$$ and $$S$$ transitive $$ \Rightarrow \,R \cup S$$   is transitive