42.
A relation $$R$$ is defined in the set $$Z$$ of integers as follows $$\left( {x,\,y} \right) \in \,R$$ iff $${x^2} + {y^2} = 9.$$ Which of the following is false ?
43.
Let $$A = \left\{ {x|x \leqslant 9,\,x\, \in \,N} \right\}.$$ Let $$B = \left\{ {a,\,b,\,c} \right\}$$ be the subset of $$A$$ where $$\left( {a + b + c} \right)$$ is a multiple of $$3.$$ What is the largest possible number of subsets like $$B$$ ?
A
12
B
21
C
27
D
30
Answer :
30
Given $$A = \left\{ {x:x \leqslant 9,\,x\, \in \,N} \right\} = \left\{ {1,\,2,\,3,\,4,\,5,\,6,\,7,\,8,\,9} \right\}$$
Total possible multiple of $$3$$ are $$3,\,6,\,9,\,12,\,15,\,18,\,21,\,24,\,27$$
But $$3$$ and $$27$$ are not possible because $$3$$ and $$27$$ can not be express as such that $$a + b + c$$ is multiple of $$3.$$
$$\eqalign{
& 6 \to 1 + 2 + 3 \cr
& 9 \to 2 + 3 + 4,\,5 + 3 + 1,\,6 + 2 + 1, \cr
& 12 \to 9 + 2 + 1,8 + 3 + 1,\,7 + 1 + 4,\,7 + 2 + 3,\,6 + 4 + 2,\,6 + 5 + 1,\,5 + 4 + 3 \cr
& 15 \to 9 + 4 + 2,\,9 + 5 + 1,\,8 + 6 + 1,\,8 + 5 + 2,\,8 + 4 + 3,\,7 + 6 + 2,\,7 + 5 + 3,\,6 + 5 + 4 \cr
& 18 \to 9 + 8 + 1,\,9 + 7 + 2,\,9 + 6 + 3,\,9 + 4 + 5,\,8 + 7 + 3,\,8 + 6 + 4,\,7 + 6 + 5 \cr
& 21 \to 9 + 8 + 4,\,9 + 7 + 5,\,8 + 7 + 6 \cr
& 24 \to 9 + 8 + 7 \cr} $$
Hence, total largest possible subsets are $$30.$$
44.
Let $$f\left( x \right) = \sin \,x$$ and $$g\left( x \right) = {\log _e}\left| x \right|.$$ If the ranges of the composition functions fog and gof are $${R_1}$$ and $${R_2},$$ respectively, then :
A
$${R_1} = \left\{ {u: - 1 \leqslant u < 1} \right\},\,{R_2} = \left\{ {v: - \infty < v < 0} \right\}$$
B
$${R_1} = \left\{ {u: - \infty < u < 0} \right\},\,{R_2} = \left\{ {v: - \infty < v < 0} \right\}$$
C
$${R_1} = \left\{ {u: - 1 < u < 1} \right\},\,{R_2} = \left\{ {v: - \infty < v < 0} \right\}$$
D
$${R_1} = \left\{ {u: - 1 \leqslant u \leqslant 1} \right\},\,{R_2} = \left\{ {v: - \infty < v \leqslant 0} \right\}$$
$$\eqalign{
& {\text{We have fog}}\left( x \right) = f\left( {g\left( x \right)} \right) = \sin \left( {{{\log }_e}\left| x \right|} \right) \cr
& {\log _e}\left| x \right|\,{\text{has range }}R,{\text{ for which}}\,\sin \left( {{{\log }_e}\left| x \right|} \right) \in \left[ { - 1,\,1} \right] \cr
& {\text{Therefore, }}{R_1} = \left\{ {u: - 1 \leqslant u \leqslant 1} \right\} \cr
& {\text{Also, gof}}\left( x \right) = g\left( {f\left( x \right)} \right) = {\log _e}\left| {\sin \,x} \right| \cr
& \because \,\,0 \leqslant \left| {\sin \,x} \right| \leqslant 1{\text{ }} \cr
& {\text{or }} - \infty < {\log _e}\left| {\sin \,x} \right| \leqslant 0 \cr
& {\text{or }}{R_2} = \left\{ {v: - \infty < v \leqslant 0} \right\} \cr} $$
45.
If $$f:R \to R$$ is given by $$f\left( x \right) = \frac{{{x^2} - 4}}{{{x^2} + 1}},$$ then the function $$f$$ is :
A
many-one onto
B
many-one into
C
one-one into
D
one-one into
Answer :
many-one onto
$$\eqalign{
& f\left( x \right) = f\left( { - x} \right).{\text{ So, }}f{\text{ is many - one}}{\text{.}} \cr
& {\text{Also, }}f\left( x \right) = 1 - \frac{5}{{{x^2} + 1}} > 1 - 5 = - 4 \cr
& {\text{So, }}f{\text{ is into}}{\text{.}} \cr} $$
46.
20 teachers of a school either teach mathematics or physics. 12 of them teach mathematics while 4 teach both the subjects. Then the number of teachers teaching only physics is :
47.
$$A,\,B,\,C$$ and $$D$$ are four sets such that $$A \cap B = C \cap D = \phi .$$ Consider the following :
1. $$A \cup C$$ and $$B \cup D$$ are always disjoint.
2. $$A \cap C$$ and $$B \cap D$$ are always disjoint.
Which of the above statements is/are correct ?
48.
In a group in a group of 500 students, there are 475 students who can speak Hindi and 200 speak Bengali. What is the number of students who can speak Hindi only ?
A
275
B
300
C
325
D
350
Answer :
300
Total number of students $$ = 500$$
Let $$H$$ be the set showing number of students who can speak Hindi $$ = 475$$ and $$B$$ be the set showing number of students who can speak Bengali $$ = 200$$
So, $$n\left( H \right) = 475$$ and $$n\left( B \right) = 200$$ and given that $$n\left( {B \cup H} \right) = 500$$
we have
$$\eqalign{
& n\left( {B \cup H} \right) = n\left( B \right) + n\left( H \right) - n\left( {B \cap H} \right) \cr
& \Rightarrow \,500 = 200 + 475 - n\left( {B \cap H} \right) \cr
& {\text{So, }}n\left( {B \cap H} \right) = 175 \cr} $$
Hence, persons who speak Hindi only $$ = n\left( H \right) - n\left( {B \cap H} \right) = 475 - 175 = 300$$
49.
Consider the following statements :
For non empty sets $$A,\,B$$ and $$C$$
$$\eqalign{
& 1.\,\,A - \left( {B - C} \right) = \left( {A - B} \right) \cup C \cr
& 2.\,\,A - \left( {B \cup C} \right) = \left( {A - B} \right) - C \cr} $$
Which of the statements given above is/are correct ?
A
1 only
B
2 only
C
Both 1 and 2
D
Neither 1 nor 2
Answer :
2 only
Let there be three non empty, non overlapping sets; inside a universal set $$U.$$ This creates $$8$$ regions marked as: $$a,\,b,\,c,\,d,\,e,\,f,\,g,\,h$$
$$\eqalign{
& {\bf{Statement}}\,{\bf{1:}}\,\,A - \left( {B - C} \right) = \left( {A - B} \right) \cup C \cr
& {\text{L}}{\text{.H}}{\text{.S}}{\text{. represent region }}'a',\,{\text{R}}{\text{.H}}{\text{.S}}{\text{. represents }}'a,\,d,\,g' \cr
& {\text{Hence, this is not correct}}{\text{.}} \cr
& {\bf{Statement}}\,{\bf{2:}}\,\,A - \left( {B \cup C} \right) = \left( {A - B} \right) - C \cr
& {\text{L}}{\text{.H}}{\text{.S}}{\text{. represent region }}'a',\,{\text{R}}{\text{.H}}{\text{.S}}{\text{. also represents }}'a' \cr
& {\text{Hence, only statement 2 is correct}}{\text{.}} \cr} $$
50.
If \[f\left( x \right) = \left\{ \begin{array}{l}
{x^3} + 1,\,\,\,x < 0\\
{x^2} + 1,\,\,\,x \ge 0
\end{array} \right.,\,g\left( x \right) = \left\{ \begin{array}{l}
{\left( {x - 1} \right)^{\frac{1}{3}}},\,\,\,x < 1\\
{\left( {x - 1} \right)^{\frac{1}{2}}},\,\,\,x \ge 1
\end{array} \right.,\] then $$\left( {gof} \right)\left( x \right)$$ is equal to :