Sets and Relations MCQ Questions & Answers in Calculus | Maths

Learn Sets and Relations MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

41. The expression $$\frac{{12}}{{3 + \sqrt 5 + 2\sqrt 2 }}$$    is equal to

A $$1 - \sqrt 5 + \sqrt 2 + \sqrt {10} $$
B $$1 + \sqrt 5 + \sqrt 2 - \sqrt {10} $$
C $$1 + \sqrt 5 - \sqrt 2 + \sqrt {10} $$
D $$1 - \sqrt 5 - \sqrt 2 + \sqrt {10} $$
Answer :   $$1 + \sqrt 5 + \sqrt 2 - \sqrt {10} $$

42. A relation $$R$$ is defined in the set $$Z$$ of integers as follows $$\left( {x,\,y} \right) \in \,R$$   iff $${x^2} + {y^2} = 9.$$   Which of the following is false ?

A $$R = \left\{ {\left( {0,\,3} \right),\,\left( {0,\, - 3} \right),\,\left( {3,\,0} \right),\,\left( { - 3,\,0} \right)} \right\}$$
B Domain of $$R = \left\{ { - 3,\,0,\,3} \right\}$$
C Range of $$R = \left\{ { - 3,\,0,\,3} \right\}$$
D None of these
Answer :   None of these

43. Let $$A = \left\{ {x|x \leqslant 9,\,x\, \in \,N} \right\}.$$     Let $$B = \left\{ {a,\,b,\,c} \right\}$$   be the subset of $$A$$ where $$\left( {a + b + c} \right)$$   is a multiple of $$3.$$ What is the largest possible number of subsets like $$B$$ ?

A 12
B 21
C 27
D 30
Answer :   30

44. Let $$f\left( x \right) = \sin \,x$$   and $$g\left( x \right) = {\log _e}\left| x \right|.$$    If the ranges of the composition functions fog and gof are $${R_1}$$ and $${R_2},$$ respectively, then :

A $${R_1} = \left\{ {u: - 1 \leqslant u < 1} \right\},\,{R_2} = \left\{ {v: - \infty < v < 0} \right\}$$
B $${R_1} = \left\{ {u: - \infty < u < 0} \right\},\,{R_2} = \left\{ {v: - \infty < v < 0} \right\}$$
C $${R_1} = \left\{ {u: - 1 < u < 1} \right\},\,{R_2} = \left\{ {v: - \infty < v < 0} \right\}$$
D $${R_1} = \left\{ {u: - 1 \leqslant u \leqslant 1} \right\},\,{R_2} = \left\{ {v: - \infty < v \leqslant 0} \right\}$$
Answer :   $${R_1} = \left\{ {u: - 1 \leqslant u \leqslant 1} \right\},\,{R_2} = \left\{ {v: - \infty < v \leqslant 0} \right\}$$

45. If $$f:R \to R$$   is given by $$f\left( x \right) = \frac{{{x^2} - 4}}{{{x^2} + 1}},$$    then the function $$f$$ is :

A many-one onto
B many-one into
C one-one into
D one-one into
Answer :   many-one onto

46. 20 teachers of a school either teach mathematics or physics. 12 of them teach mathematics while 4 teach both the subjects. Then the number of teachers teaching only physics is :

A 12
B 8
C 16
D none of these
Answer :   8

47. $$A,\,B,\,C$$   and $$D$$ are four sets such that $$A \cap B = C \cap D = \phi .$$     Consider the following :
1. $$A \cup C$$  and $$B \cup D$$  are always disjoint.
2. $$A \cap C$$  and $$B \cap D$$  are always disjoint.
Which of the above statements is/are correct ?

A 1 only
B 2 only
C Both 1 and 2
D Neither 1 nor 2s
Answer :   2 only

48. In a group in a group of 500 students, there are 475 students who can speak Hindi and 200 speak Bengali. What is the number of students who can speak Hindi only ?

A 275
B 300
C 325
D 350
Answer :   300

49. Consider the following statements :
For non empty sets $$A,\,B$$  and $$C$$
$$\eqalign{ & 1.\,\,A - \left( {B - C} \right) = \left( {A - B} \right) \cup C \cr & 2.\,\,A - \left( {B \cup C} \right) = \left( {A - B} \right) - C \cr} $$
Which of the statements given above is/are correct ?

A 1 only
B 2 only
C Both 1 and 2
D Neither 1 nor 2
Answer :   2 only

50. If \[f\left( x \right) = \left\{ \begin{array}{l} {x^3} + 1,\,\,\,x < 0\\ {x^2} + 1,\,\,\,x \ge 0 \end{array} \right.,\,g\left( x \right) = \left\{ \begin{array}{l} {\left( {x - 1} \right)^{\frac{1}{3}}},\,\,\,x < 1\\ {\left( {x - 1} \right)^{\frac{1}{2}}},\,\,\,x \ge 1 \end{array} \right.,\]           then $$\left( {gof} \right)\left( x \right)$$   is equal to :

A $$x,\,\forall \,x\, \in \,R$$
B $$x - 1,\,\forall \,x\, \in R$$
C $$x + 1,\,\forall \,x\, \in R$$
D none of these
Answer :   $$x,\,\forall \,x\, \in \,R$$