Sets and Relations MCQ Questions & Answers in Calculus | Maths

Learn Sets and Relations MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

51. If $$f\left( x \right) = \frac{{ax + d}}{{cx + b}}$$   and $$f\left[ {f\left( x \right)} \right] = x$$   for all $$x,$$ then :

A $$a = b$$
B $$c = d$$
C $$a + b = 0$$
D $$c + d = 0$$
Answer :   $$a + b = 0$$

52. If $$f:R \to S,$$   defined by $$f\left( x \right) = \sin \,x - \sqrt 3 \,\cos \,x + 1,$$       is onto, then the interval of $$S$$ is :

A $$\left[ { - 1,\,3} \right]$$
B $$\left[ { - 1,\,1} \right]$$
C $$\left[ {0,\,1} \right]$$
D $$\left[ { 0,\,3} \right]$$
Answer :   $$\left[ { - 1,\,3} \right]$$

53. The number of surjection from $$A = \left\{ {1,\,2,\,.....,\,n} \right\},\,n \geqslant 2{\text{ onto }}B = \left\{ {a,\,b} \right\}$$         is :

A $${}^n{P_2}$$
B $${2^n} - 2$$
C $${2^n} - 1$$
D none of these
Answer :   $${2^n} - 2$$

54. If $$A = \left\{ {8,\,9,\,10} \right\}$$    and $$B = \left\{ {1,\,2,\,3,\,4,\,5} \right\},$$     then the number of elements in $$A \times A \times B$$   are :

A $$15$$
B $$30$$
C $$45$$
D $$75$$
Answer :   $$45$$

55. Let $$R$$ be a relation over the $$N \times N$$  and it is defined by $$\left( {a,\,b} \right)R\left( {c,\,d} \right) \Rightarrow a + d = b + c.$$      Then, $$R$$ is :

A Reflexive only
B Symmetric only
C Transitive only
D An equivalence relation
Answer :   An equivalence relation

56. Let $$P = \left\{ {\theta :\sin \theta - \cos \theta = \sqrt 2 \cos \theta } \right\}$$       and $$Q = \left\{ {\theta :\sin \theta + \cos \theta = \sqrt 2 \cos \theta } \right\}$$       be two sets. Then

A $$P \subset Q\,\,{\text{and }}Q - P \ne \phi $$
B $$Q \not\subset P\,$$
C $$P \not\subset Q\,$$
D $$P = Q$$
Answer :   $$P = Q$$

57. The graph of the function $$\cos \,x\,\cos \left( {x + 2} \right) - {\cos ^2}\left( {x + 1} \right)$$       is :

A a straight line passing through $$\left( {0,\, - {{\sin }^2}1} \right)$$   with slope $$2$$
B a straight line passing through $$\left( {0,\,0} \right)$$
C a parabola with vertex $$\left( {0,\, - {{\sin }^2}1} \right)$$
D a straight line passing through the point $$\left( {\frac{\pi }{2},\, - {{\sin }^2}1} \right)$$   and parallel to the $$x$$-axis
Answer :   a straight line passing through the point $$\left( {\frac{\pi }{2},\, - {{\sin }^2}1} \right)$$   and parallel to the $$x$$-axis

58. If $$f\left( x \right)$$  is an invertible function and $$g\left( x \right) = 2f\left( x \right) + 5,$$    then the value of $${g^{ - 1}}\left( x \right)$$  is :

A $$2{f^{ - 1}}\left( x \right) - 5$$
B $$\frac{1}{{2{f^{ - 1}}\left( x \right) + 5}}$$
C $$\frac{1}{2}{f^{ - 1}}\left( x \right) + 5$$
D $${f^{ - 1}}\left( {\frac{{x - 5}}{2}} \right)$$
Answer :   $${f^{ - 1}}\left( {\frac{{x - 5}}{2}} \right)$$

59. Inverse of the function $$f:R \to \left( { - \infty ,\,1} \right)$$    given by $$f\left( x \right) = 1 - {2^{ - x}},$$    is :

A $$ - {\log _2}\left( {1 - x} \right)$$
B $$ - {\log _2}\left( {x} \right)$$
C $$0$$
D $$1$$
Answer :   $$ - {\log _2}\left( {1 - x} \right)$$

60. If the cardinality of a set $$A$$ is 4 and that of a set $$B$$ is 3, then what is the cardinality of the set $$A\Delta B\,?$$

A 1
B 5
C 7
D Cannot be determined as the sets $$A$$ and $$B$$ are not given
Answer :   Cannot be determined as the sets $$A$$ and $$B$$ are not given