53.
The number of surjection from $$A = \left\{ {1,\,2,\,.....,\,n} \right\},\,n \geqslant 2{\text{ onto }}B = \left\{ {a,\,b} \right\}$$ is :
A
$${}^n{P_2}$$
B
$${2^n} - 2$$
C
$${2^n} - 1$$
D
none of these
Answer :
$${2^n} - 2$$
We know that, if $$X$$ and $$Y$$ are any two finite sets having $$m$$ and $$n$$ elements respectively, where $$1 \leqslant n \leqslant m,$$ then the number of onto functions from $$X$$ to $$Y$$ is given by $$\sum\limits_{r = 1}^n {{{\left( { - 1} \right)}^{n - r}}\,{}^n{C_r}{r^m}.r = 1} $$
Thus, the number of surjective mapping is $$\sum\limits_{r = 1}^2 {{{\left( { - 1} \right)}^{2 - r}}\,{C_r}{r^n} = \left( {{2^n} - 2} \right)} $$
54.
If $$A = \left\{ {8,\,9,\,10} \right\}$$ and $$B = \left\{ {1,\,2,\,3,\,4,\,5} \right\},$$ then the number of elements in $$A \times A \times B$$ are :
A
$$15$$
B
$$30$$
C
$$45$$
D
$$75$$
Answer :
$$45$$
$$\eqalign{
& n\left( {A \times B \times C \times .....} \right) = n\left( A \right) \times n\left( B \right) \times n\left( C \right)...... \cr
& \therefore \,n\left( {A \times A \times B} \right) \cr
& = n\left( A \right) \times n\left( A \right) \times n\left( B \right) \cr
& = 3 \times 3 \times 5 = 45\,\,\,\,\,\left[ {\because \,n\left( A \right) = 3,\,\,n\left( B \right) = 5} \right] \cr} $$
55.
Let $$R$$ be a relation over the $$N \times N$$ and it is defined by $$\left( {a,\,b} \right)R\left( {c,\,d} \right) \Rightarrow a + d = b + c.$$ Then, $$R$$ is :
A
Reflexive only
B
Symmetric only
C
Transitive only
D
An equivalence relation
Answer :
An equivalence relation
$$\eqalign{
& {\text{We have }}\left( {a,\,b} \right)R\left( {a,\,b} \right)\,{\text{for all }}\left( {a,\,b} \right)\, \in \,N \times N \cr
& {\text{As}}\,a + b = b + a{\text{. Hence }}R\,{\text{is reflexive}} \cr
& R\,{\text{is symmetric for we have }}\left( {a,\,b} \right)R\left( {c,\,d} \right) \cr
& \Rightarrow a + d = b + c\,\,\,\,\,\, \Rightarrow d + a = c + b \cr
& \Rightarrow c + b = d + a\,\,\,\,\,\, \Rightarrow \left( {c,\,d} \right)R\left( {e,\,f} \right) \cr
& {\text{Then, by defination of }}R,\,{\text{we have}} \cr
& a + d = b + c{\text{ and }}c + f = d + e \cr
& {\text{So, by addition, we get}} \cr
& a + d + c + f = b + c + d + c{\text{ or }}a + f = b + e \cr
& {\text{Hence, }}\left( {a,\,b} \right)R\left( {e,\,f} \right) \cr
& {\text{Thuse, }}\left( {a,\,b} \right)R\left( {c,\,d} \right){\text{ and }}\left( {c,\,d} \right)R\left( {e,\,f} \right) \cr
& \Rightarrow \,\left( {a,\,b} \right)R\left( {e,\,f} \right) \cr} $$
56.
Let $$P = \left\{ {\theta :\sin \theta - \cos \theta = \sqrt 2 \cos \theta } \right\}$$ and $$Q = \left\{ {\theta :\sin \theta + \cos \theta = \sqrt 2 \cos \theta } \right\}$$ be two sets. Then
57.
The graph of the function $$\cos \,x\,\cos \left( {x + 2} \right) - {\cos ^2}\left( {x + 1} \right)$$ is :
A
a straight line passing through $$\left( {0,\, - {{\sin }^2}1} \right)$$ with slope $$2$$
B
a straight line passing through $$\left( {0,\,0} \right)$$
C
a parabola with vertex $$\left( {0,\, - {{\sin }^2}1} \right)$$
D
a straight line passing through the point $$\left( {\frac{\pi }{2},\, - {{\sin }^2}1} \right)$$ and parallel to the $$x$$-axis
Answer :
a straight line passing through the point $$\left( {\frac{\pi }{2},\, - {{\sin }^2}1} \right)$$ and parallel to the $$x$$-axis
$$\eqalign{
& y = \frac{1}{2}\left[ {\cos \left( {2x + 2} \right) + \cos \,2 - \left\{ {1 + \cos \left( {2x + 2} \right)} \right\}} \right] \cr
& {\text{or }}y = - \frac{1}{2}\left( {1 - \cos \,2} \right) = - {\sin ^2}1{\text{ i}}{\text{.e}}{\text{., constant}} \cr} $$
$$\therefore $$ Graph is a line parallel to $$x$$-axis. Also when $$x = \frac{\pi }{2},\,y = - {\cos ^2}\left( {\frac{\pi }{2} + 1} \right) = - {\sin ^2}1$$ and hence it passes through the point $$\left( {\frac{\pi }{2},\, - {{\sin }^2}1} \right)$$
58.
If $$f\left( x \right)$$ is an invertible function and $$g\left( x \right) = 2f\left( x \right) + 5,$$ then the value of $${g^{ - 1}}\left( x \right)$$ is :
A
$$2{f^{ - 1}}\left( x \right) - 5$$
B
$$\frac{1}{{2{f^{ - 1}}\left( x \right) + 5}}$$
C
$$\frac{1}{2}{f^{ - 1}}\left( x \right) + 5$$
D
$${f^{ - 1}}\left( {\frac{{x - 5}}{2}} \right)$$
60.
If the cardinality of a set $$A$$ is 4 and that of a set $$B$$ is 3, then what is the cardinality of the set $$A\Delta B\,?$$
A
1
B
5
C
7
D
Cannot be determined as the sets $$A$$ and $$B$$ are not given
Answer :
Cannot be determined as the sets $$A$$ and $$B$$ are not given
Given, $$n\left( A \right) = 4,\,n\left( B \right) = 3$$
Since, the sets $$A$$ and $$B$$ are not known, then cardinality of the set $$A\Delta B$$ cannot be determined.