Sets and Relations MCQ Questions & Answers in Calculus | Maths

Learn Sets and Relations MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

61. Let $$f:\left( {4,\,6} \right) \to \left( {6,\,8} \right)$$    be a function defined by $$f\left( x \right) = x + \left[ {\frac{x}{2}} \right]$$   (where [.] denotes the greatest integer function), then $${f^{ - 1}}\left( x \right)$$  is equal to :

A $$x - \left[ {\frac{x}{2}} \right]$$
B $$ - x - 2$$
C $$x - 2$$
D $$\frac{1}{{x + \left[ {\frac{x}{2}} \right]}}$$
Answer :   $$x - 2$$

62. In a city 20 percent of the population travels by car, 50 percent travels by bus and 10 percent travels by both car and bus. Then person travelling by car or bus is :

A 80 percent
B 40 percent
C 60 percent
D 70 percent
Answer :   60 percent

63. Let a relation $$R$$ in the set $$R$$ of real numbers be defined as $$\left( {a,\,b} \right)\, \in \,R$$   if and only if $$1 + ab > 0$$   for all $$a,\,b\, \in \,R.$$
The relation $$R$$ is :

A reflexive and symmetric
B symmetric and transitive
C only transitive
D an equivalence relation
Answer :   reflexive and symmetric

64. If $$f\left( x \right) = 2x + \left| x \right|,\,g\left( x \right) = \frac{1}{3}\left( {2x - \left| x \right|} \right)$$        and $$h\left( x \right) = f\left( {g\left( x \right)} \right),$$    then domain of $${\sin ^{ - 1}}\underbrace {\left( {h\left( {h\left( {h\left( {h.....h\left( x \right).....} \right)} \right)} \right)} \right)}_{n{\text{ times}}}$$        is :

A $$\left[ { - 1,\,1} \right]$$
B $$\left[ { - 1,\, - \frac{1}{2}} \right] \cup \left[ {\frac{1}{2},\,1} \right]$$
C $$\left[ { - 1,\, - \frac{1}{2}} \right]$$
D $$\left[ {\frac{1}{2},\,1} \right]$$
Answer :   $$\left[ { - 1,\,1} \right]$$

65. If $$f\left( x \right) = {\sin ^2}x + {\sin ^2}\left( {x + \frac{\pi }{3}} \right) + \cos \,x\,\cos \left( {x + \frac{\pi }{3}} \right)$$          and $$g\left( {\frac{5}{4}} \right) = 1,$$   then $$gof\left( x \right) = ?$$

A $$1$$
B $$0$$
C $$\sin \,x$$
D none
Answer :   $$1$$

66. If $$f\left( x \right) = \left| {x - 2} \right|$$   and $$g\left( x \right) = f\left[ {f\left( x \right)} \right],$$    then for $$x > 20,\,g'\left( x \right)$$   is equal to :

A $$ - 1$$
B $$1$$
C $$2$$
D none of these
Answer :   $$1$$

67. If $$A = \left\{ {1,\,2} \right\},\,B = \left\{ {1,\,3} \right\},$$      then $$\left( {A \times B} \right) \cup \left( {B \times A} \right)$$    is equal to :

A $$\left\{ {\left( {1,\,3} \right),\,\left( {2,\,3} \right),\,\left( {3,\,1} \right),\,\left( {3,\,2} \right),\,\left( {1,\,1} \right),\,\left( {2,\,1} \right),\,\left( {1,\,2} \right)} \right\}$$
B $$\left\{ {\left( {1,\,3} \right),\,\left( {3,\,1} \right),\,\left( {3,\,2} \right),\,\left( {2,\,3} \right)} \right\}$$
C $$\left\{ {\left( {1,\,3} \right),\,\left( {2,\,3} \right),\,\left( {3,\,1} \right),\,\left( {3,\,2} \right),\,\left( {1,\,1} \right)} \right\}$$
D None of these
Answer :   $$\left\{ {\left( {1,\,3} \right),\,\left( {2,\,3} \right),\,\left( {3,\,1} \right),\,\left( {3,\,2} \right),\,\left( {1,\,1} \right),\,\left( {2,\,1} \right),\,\left( {1,\,2} \right)} \right\}$$

68. Of the members of three athletic teams in a school, $$21$$ are in the cricket team, $$26$$ are in the hockey team and $$29$$ are in the football team. Among them, $$14$$ play hockey and cricket, $$15$$ play hockey and football, and $$12$$ play football and cricket. Eight play all the three games. The total number of members in the three athletic teams is :

A $$43$$
B $$76$$
C $$49$$
D none of these
Answer :   $$43$$

69. Let function $$f:R \to R$$   be defined by $$f\left( x \right) = 2x + \sin \,x$$    for $$x\, \in \,R$$  then $$f$$ is :

A one-one and onto
B one-one but NOT onto
C onto but NOT one-one
D neither one-one nor onto
Answer :   one-one and onto

70. Let $$P = \left\{ {\left( {x,\,y} \right):\left| {{x^2} + {y^2}} \right| = 1,\,x,\,y\, \in \,R\,} \right\}.$$        Then $$P$$ is :

A Reflexive
B Symmetric
C Transitive
D Anti-symmetric
Answer :   Symmetric