Hyperbola MCQ Questions & Answers in Geometry | Maths
Learn Hyperbola MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.
11.
If $$AB$$ is a double ordinate of the hyperbola $$\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$$ such that $$\Delta OAB$$ is an equilateral triangle $$O$$ being the origin, then the eccentricity of the hyperbola satisfies :
A
$$e > \sqrt 3 $$
B
$$1 < e < \frac{2}{{\sqrt 3 }}$$
C
$$e = \frac{2}{{\sqrt 3 }}$$
D
$$e > \frac{2}{{\sqrt 3 }}$$
Answer :
$$e > \frac{2}{{\sqrt 3 }}$$
Let the length of the double ordinate be $$2\ell $$
$$\therefore \,AB = 2\ell {\text{ and }}AM = BM = \ell $$
Clearly ordinate of point $$A$$ is $$\ell $$
The abscissa of the point $$A$$ is given by
$$\eqalign{
& \frac{{{x^2}}}{{{a^2}}} - \frac{{{\ell ^2}}}{{{b^2}}} = 1 \Rightarrow x = \frac{{a\sqrt {{b^2} + {\ell ^2}} }}{b} \cr
& \therefore \,A{\text{ is }}\left( {\frac{{a\sqrt {{b^2} + {\ell ^2}} }}{b},\,\ell } \right) \cr} $$
Since $$\Delta OAB$$ is equilateral triangle, therefore $$OA = AB = OB = 2\ell $$
Also, $$O{M^2} + A{M^2} = O{A^2}$$
$$\eqalign{
& \therefore \,\frac{{{a^2}\left( {{b^2} + {\ell ^2}} \right)}}{{{b^2}}} + {\ell ^2} = 4{\ell ^2} \cr
& {\text{we get }}{\ell ^2} = \frac{{{a^2}{b^2}}}{{3{b^2} - {a^2}}} \cr
& {\text{Since, }}{\ell ^2} > 0 \cr
& \therefore \frac{{{a^2}{b^2}}}{{3{b^2} - {a^2}}} > 0 \cr
& \Rightarrow 3{b^2} - {a^2} > 0 \cr
& \Rightarrow 3{a^2}\left( {{e^2} - 1} \right) - {a^2} > 0 \cr
& \Rightarrow e > \frac{2}{{\sqrt 3 }} \cr} $$
12.
Each of the four inequalities given below defines a region in the $$xy$$ plane. One of these four regions does not have the following property. For any two points $$\left( {{x_1},\,{y_1}} \right)$$ and $$\left( {{x_2},\,{y_2}} \right)$$ in the
the region, the point $$\left( {\frac{{{x_1} + {x_2}}}{2},\,\frac{{{y_1} + {y_2}}}{2}} \right)$$ is also in the region. The inequality defining this region is :
A
$${x^2} + 2{y^2} \leqslant 1$$
B
$${\text{max }}\left\{ {\left| x \right|,\left| y \right|} \right\} \leqslant 1$$
C
$${x^2} - {y^2} \leqslant 1$$
D
$${y^2} - {x^2} \leqslant 0$$
Answer :
$${x^2} - {y^2} \leqslant 1$$
Option A, $${x^2} + 2{y^2} \leqslant 1$$
It can be written as $$\frac{{{x^2}}}{1} + \frac{{{y^2}}}{{\frac{1}{2}}} \leqslant 1$$
which represents inside region of an ellipse
We know for an ellipse, the mid-point of any two points in the region, is also in the region.
Let's take two points $$\left( {0,\,0} \right)$$ and $$\left( {\frac{1}{2},\,0} \right)$$ which lies in the region.
Now, mid-point is $$\left( {\frac{1}{4},\,0} \right)$$ which also lies in the region.
Now, option B, $${\text{max }}\left\{ {\left| x \right|,\left| y \right|} \right\} \leqslant 1$$
Now, option C, $${x^2} - {y^2} \leqslant 1$$
which represents inside region of hyperbola.
A hyperbola has two parts . If we take 2 points , one in one part and other in other part, the mid-point need not to be inside the hyperbola.
Let's take $$\left( { - \frac{1}{2},\,0} \right)$$ and $$\left( {\frac{1}{4},\,0} \right)$$ as two points.
Their mid-point is $$\left( { - \frac{1}{8},\,0} \right)$$ is not in the region of hyperbola.
Hence, option C does not satisfy property P. Option D, $${y^2} - {x^2} \leqslant 0$$
which represents inside region of pair of straight lines.
Mid-point of any two point in the region will lie in the region only.
Hence, satisfies property P.
13.
A hyperbola passes through the point $$P\left( {\sqrt 2 ,\,\sqrt 3 } \right)$$ and has foci at $$\left( { \pm 2,\,0} \right).$$ Then the tangent to this hyperbola at $$P$$ also passes through the point :
Let $$P\left( {x,\,y} \right)$$ be any point on the hyperbola and $$PM$$ is perpendicular from $$P$$ on the directrix,
Then by definition, $$SP = e\,PM$$
$$\eqalign{
& \Rightarrow {\left( {SP} \right)^2} = {e^2}{\left( {PM} \right)^2} \cr
& \Rightarrow {\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} = 3{\left\{ {\frac{{2x + y - 1}}{{\sqrt {4 + 1} }}} \right\}^2}\,\,\,\,\,\left( {\because \,\,e = \sqrt 3 } \right) \cr
& \Rightarrow 5\left( {{x^2} + {y^2} - 2x - 4y + 5} \right) = 3\left( {4{x^2} + {y^2} + 1 + 4xy - 2y - 4x} \right) \cr
& \Rightarrow 7{x^2} - 2{y^2} + 12xy - 2x + 14y - 22 = 0 \cr} $$
Which is the required hyperbola.
15.
Let $$P\left( {6,\,3} \right)$$ be a point on the hyperbola $$\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1.$$ If the normal at the point $$P$$ intersects the $$x$$-axis at $$\left( {9,\,0} \right),$$ then the eccentricity of the hyperbola is :
A
$$\sqrt {\frac{5}{2}} $$
B
$$\sqrt {\frac{3}{2}} $$
C
$$\sqrt 2 $$
D
$$\sqrt 3 $$
Answer :
$$\sqrt {\frac{3}{2}} $$
For hyperbola $$\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1,$$ we have
$$\frac{{2x}}{{{a^2}}} - \frac{{2y}}{{{b^2}}}\frac{{dy}}{{dx}} = 0\,\,\, \Rightarrow \frac{{dy}}{{dx}} = \frac{{{b^2}x}}{{{a^2}y}}$$
$$\therefore $$ Slope of normal at $$P\left( {6,\,3} \right)$$
$$ = - \frac{1}{{{{\left( {\frac{{dy}}{{dx}}} \right)}_{\left( {6,\,3} \right)}}}} = - \frac{{3{a^2}}}{{6{b^2}}}$$
$$\therefore $$ Equation of normal is $$\frac{{y - 3}}{{x - 6}} = - \frac{{3{a^2}}}{{6{b^2}}}$$
As it intersects $$x$$-axis at $$\left( {9,\,0} \right)$$
$$\therefore \frac{{0 - 3}}{{9 - 6}} = \frac{{ - 3{a^2}}}{{6{b^2}}}\,\,\, \Rightarrow {a^2} = 2{b^2}.....(1)$$
Also for hyperbola, $${b^2} = {a^2}\left( {{e^2} - 1} \right)$$
Using $${a^2} = 2{b^2};$$ we get
$$\eqalign{
& {b^2} = 2{b^2}\left( {{e^2} - 1} \right) \cr
& \frac{1}{2} = {e^2} - 1 \cr
& {\text{or,}}\,\,{e^2} = \frac{3}{2} \cr
& {\text{or,}}\,\,e = \sqrt {\frac{3}{2}} \cr} $$
16.
The value of $$m,$$ for which the line $$y = mx + \frac{{25\sqrt 3 }}{3}$$ is a normal to the conic $$\frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{9} = 1,$$ is :
A
$$ - \frac{2}{{\sqrt 3 }}$$
B
$${\sqrt 3 }$$
C
$$ - \frac{{\sqrt 3 }}{2}$$
D
none of these
Answer :
$$ - \frac{2}{{\sqrt 3 }}$$
The equation of normal to the hyperbola $$\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$$ in terms of slope $$'m'$$ is $$y = mx \pm \frac{{m\left( {{a^2} + {b^2}} \right)}}{{\sqrt {{a^2} - {b^2}{m^2}} }}\,;$$
$${\text{Given line }}y = mx + \frac{{25\sqrt 3 }}{3}$$
and conic $$\frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{9} = 1$$ which is hyperbola with $${a^2} = 16,\,{b^2} = 9$$
By comparing given line with equation of normal we get
$$\eqalign{
& \pm \frac{{m\left( {{a^2} + {b^2}} \right)}}{{\sqrt {{a^2} - {b^2}{m^2}} }} = + \frac{{25\sqrt 3 }}{3} \cr
& \Rightarrow \frac{{m\left( {16 + 9} \right)}}{{\sqrt {16 - 9{m^2}} }} = - \frac{{25\sqrt 3 }}{3} \cr
& \Rightarrow \frac{{25m}}{{\sqrt {16 - 9{m^2}} }} = - \frac{{25\sqrt 3 }}{3} \cr
& \Rightarrow 9{m^2} = 3\left( {16 - 9{m^2}} \right) \cr
& \Rightarrow {m^2} = \frac{{16}}{{12}} \cr
& \Rightarrow {m^2} = \frac{4}{3} \cr
& \Rightarrow m = \pm \frac{2}{{\sqrt 3 }} \cr} $$
17.
If the line $$2x + \sqrt 6 y = 2$$ touches the hyperbola $${x^2} - 2{y^2} = 4,$$ then the point of contact is-
A
$$\left( { - 2,\,\sqrt 6 } \right)$$
B
$$\left( { - 5,\,2\sqrt 6 } \right)$$
C
$$\left( {\frac{1}{2},\,\frac{1}{{\sqrt 6 }}} \right)$$
D
$$\left( {4,\, - \sqrt 6 } \right)$$
Answer :
$$\left( {4,\, - \sqrt 6 } \right)$$
Equation of tangent to hyperbola $${x^2} - 2{y^2} = 4$$ at any point $$\left( {{x_1},\,{y_1}} \right)$$ is $$x{x_1} - 2y{y_1} = 4$$
Comparing with $$2x + \sqrt 6 y = 2$$ or $$4x + 2\sqrt 6 y = 4$$
$$ \Rightarrow {x_1} = 4$$ and $$ - 2{y_1} = 2\sqrt 6 \Rightarrow \left( {4,\, - \sqrt 6 } \right)$$ is the required point.
18.
If the tangent and the normal to $${x^2} - {y^2} = 4$$ at a point cut off intercepts $${a_1},\,{a_2}$$ on the $$x$$-axis respectively and $${b_1},\,{b_2}$$ on the $$y$$-axis respectively then the value of $${a_1}{a_2} + {b_1}{b_2}$$ is :
19.
A hyperbola, having the transverse axis of length $$2\,\sin \,\theta ,$$ is confocal with the ellipse $$3{x^2} + 4{y^2} = 12.$$ Then its equation is :
A
$${x^2}{\text{cose}}{{\text{c}}^2}\theta - {y^2}{\sec ^2}\theta = 1$$
B
$${x^2}{\sec ^2}\theta - {y^2}{\text{cose}}{{\text{c}}^2}\theta = 1$$
C
$${x^2}{\sin ^2}\theta - {y^2}{\cos ^2}\theta = 1$$
D
$${x^2}{\cos ^2}\theta - {y^2}{\sin ^2}\theta = 1$$
The length of transverse axis $$ = 2\,\sin \,\theta = 2a\,\, \Rightarrow a = \sin \,\theta $$
Also for ellipse $$3{x^2} + 4{y^2} = 12$$
$$\eqalign{
& {\text{or}}\,\,\,\,\,\frac{{{x^2}}}{4} + \frac{{{y^2}}}{3} = 1,\,\,{a^2} = 4,\,\,{b^2} = 3 \cr
& e = \sqrt {1 - \frac{{{b^2}}}{{{a^2}}}} = \sqrt {1 - \frac{3}{4}} = \frac{1}{2} \cr} $$
$$\therefore $$ Focus of ellipse $$ = \left( {2 \times \frac{1}{2},\,0} \right) \Rightarrow \left( {1,\,0} \right)$$
As hyperbola is confocal with ellipse, focus of hyperbola $$ = \left( {1,\,0} \right) \Rightarrow ae = 1 \Rightarrow \sin \,\theta \times e = 1 \Rightarrow e = {\text{cosec}}\,\theta $$
$$\therefore {b^2} = {a^2}\left( {{e^2} - 1} \right) = {\sin ^2}\theta \left( {{\text{cose}}{{\text{c}}^2}\theta - 1} \right) = {\cos ^2}\theta $$
$$\therefore $$ Equation of hyperbola is
$$\eqalign{
& \frac{{{x^2}}}{{{{\sin }^2}\theta }} - \frac{{{y^2}}}{{{{\cos }^2}\theta }} = 1 \cr
& {\text{or, }}{x^2}{\text{cose}}{{\text{c}}^2}\theta - {y^2}{\sec ^2}\theta = 1 \cr} $$
20.
Let $$0 < \theta < \frac{\pi }{2}.$$ If the eccentricity of the hyperbola $$\frac{{{x^2}}}{{{{\cos }^2}\theta }} - \frac{{{y^2}}}{{{{\sin }^2}\theta }} = 1$$ is greater than $$2$$, then the length of its latus rectum lies in the interval :