Hyperbola MCQ Questions & Answers in Geometry | Maths

Learn Hyperbola MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.

11. If $$AB$$  is a double ordinate of the hyperbola $$\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$$    such that $$\Delta OAB$$   is an equilateral triangle $$O$$ being the origin, then the eccentricity of the hyperbola satisfies :

A $$e > \sqrt 3 $$
B $$1 < e < \frac{2}{{\sqrt 3 }}$$
C $$e = \frac{2}{{\sqrt 3 }}$$
D $$e > \frac{2}{{\sqrt 3 }}$$
Answer :   $$e > \frac{2}{{\sqrt 3 }}$$

12. Each of the four inequalities given below defines a region in the $$xy$$  plane. One of these four regions does not have the following property. For any two points $$\left( {{x_1},\,{y_1}} \right)$$  and $$\left( {{x_2},\,{y_2}} \right)$$  in the the region, the point $$\left( {\frac{{{x_1} + {x_2}}}{2},\,\frac{{{y_1} + {y_2}}}{2}} \right)$$    is also in the region. The inequality defining this region is :

A $${x^2} + 2{y^2} \leqslant 1$$
B $${\text{max }}\left\{ {\left| x \right|,\left| y \right|} \right\} \leqslant 1$$
C $${x^2} - {y^2} \leqslant 1$$
D $${y^2} - {x^2} \leqslant 0$$
Answer :   $${x^2} - {y^2} \leqslant 1$$

13. A hyperbola passes through the point $$P\left( {\sqrt 2 ,\,\sqrt 3 } \right)$$   and has foci at $$\left( { \pm 2,\,0} \right).$$  Then the tangent to this hyperbola at $$P$$ also passes through the point :

A $$\left( { - \sqrt 2 ,\, - \sqrt 3 } \right)$$
B $$\left( {3\sqrt 2 ,\,2\sqrt 3 } \right)$$
C $$\left( {2\sqrt 2 ,\,3\sqrt 3 } \right)$$
D $$\left( {\sqrt 3 ,\,\sqrt 2 } \right)$$
Answer :   $$\left( {2\sqrt 2 ,\,3\sqrt 3 } \right)$$

14. Equation of the hyperbola whose directrix is $$2x + y = 1,$$   focus $$\left( {1,\,2} \right)$$  and eccentricity $$\sqrt 3 $$  is :

A $$7{x^2} - 2{y^2} + 12xy - 2x + 14y - 22 = 0$$
B $$5{x^2} - 2{y^2} + 10xy + 2x + 5y - 20 = 0$$
C $$4{x^2} + 8{y^2} + 8xy + 2x - 2y + 10 = 0$$
D none of these
Answer :   $$7{x^2} - 2{y^2} + 12xy - 2x + 14y - 22 = 0$$

15. Let $$P\left( {6,\,3} \right)$$   be a point on the hyperbola $$\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1.$$    If the normal at the point $$P$$ intersects the $$x$$-axis at $$\left( {9,\,0} \right),$$  then the eccentricity of the hyperbola is :

A $$\sqrt {\frac{5}{2}} $$
B $$\sqrt {\frac{3}{2}} $$
C $$\sqrt 2 $$
D $$\sqrt 3 $$
Answer :   $$\sqrt {\frac{3}{2}} $$

16. The value of $$m,$$ for which the line $$y = mx + \frac{{25\sqrt 3 }}{3}$$    is a normal to the conic $$\frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{9} = 1,$$   is :

A $$ - \frac{2}{{\sqrt 3 }}$$
B $${\sqrt 3 }$$
C $$ - \frac{{\sqrt 3 }}{2}$$
D none of these
Answer :   $$ - \frac{2}{{\sqrt 3 }}$$

17. If the line $$2x + \sqrt 6 y = 2$$   touches the hyperbola $${x^2} - 2{y^2} = 4,$$   then the point of contact is-

A $$\left( { - 2,\,\sqrt 6 } \right)$$
B $$\left( { - 5,\,2\sqrt 6 } \right)$$
C $$\left( {\frac{1}{2},\,\frac{1}{{\sqrt 6 }}} \right)$$
D $$\left( {4,\, - \sqrt 6 } \right)$$
Answer :   $$\left( {4,\, - \sqrt 6 } \right)$$

18. If the tangent and the normal to $${x^2} - {y^2} = 4$$   at a point cut off intercepts $${a_1},\,{a_2}$$  on the $$x$$-axis respectively and $${b_1},\,{b_2}$$  on the $$y$$-axis respectively then the value of $${a_1}{a_2} + {b_1}{b_2}$$   is :

A $$1$$
B $$ - 1$$
C $$0$$
D $$4$$
Answer :   $$0$$

19. A hyperbola, having the transverse axis of length $$2\,\sin \,\theta ,$$   is confocal with the ellipse $$3{x^2} + 4{y^2} = 12.$$    Then its equation is :

A $${x^2}{\text{cose}}{{\text{c}}^2}\theta - {y^2}{\sec ^2}\theta = 1$$
B $${x^2}{\sec ^2}\theta - {y^2}{\text{cose}}{{\text{c}}^2}\theta = 1$$
C $${x^2}{\sin ^2}\theta - {y^2}{\cos ^2}\theta = 1$$
D $${x^2}{\cos ^2}\theta - {y^2}{\sin ^2}\theta = 1$$
Answer :   $${x^2}{\text{cose}}{{\text{c}}^2}\theta - {y^2}{\sec ^2}\theta = 1$$

20. Let $$0 < \theta < \frac{\pi }{2}.$$    If the eccentricity of the hyperbola $$\frac{{{x^2}}}{{{{\cos }^2}\theta }} - \frac{{{y^2}}}{{{{\sin }^2}\theta }} = 1$$    is greater than $$2$$, then the length of its latus rectum lies in the interval :

A $$\left( {3,\,\infty } \right)$$
B $$\left( {\frac{3}{2},\,2} \right]$$
C $$\left( {2,\,3} \right]$$
D $$\left( {1,\,\frac{3}{2}} \right]$$
Answer :   $$\left( {3,\,\infty } \right)$$