Hyperbola MCQ Questions & Answers in Geometry | Maths

Learn Hyperbola MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.

31. The number of values of $$m$$ for which the line $$y = mx + \sqrt {{m^2} - 4} $$     touches the hyperbola $$4\left( {{x^2} - 1} \right) = {y^2}$$    is :

A two
B zero
C one
D infinite
Answer :   infinite

32. For the Hyperbola $$\frac{{{x^2}}}{{{{\cos }^2}\alpha }} - \frac{{{y^2}}}{{{{\sin }^2}\alpha }} = 1,$$    which of the following remains constant when $$\alpha $$ varies $$=?$$

A abscissae of vertices
B abscissae of foci
C eccentricity
D directrix
Answer :   abscissae of foci

33. Equation of the latus rectum of the hyperbola $${\left( {10x - 5} \right)^2} + {\left( {10y - 2} \right)^2} = 9{\left( {3x + 4y - 7} \right)^2}{\text{ is :}}$$

A $$y - \frac{1}{5} = - \frac{3}{4}\left( {x - \frac{1}{2}} \right)$$
B $$x - \frac{1}{5} = - \frac{3}{4}\left( {y - \frac{1}{2}} \right)$$
C $$y + \frac{1}{5} = - \frac{3}{4}\left( {x + \frac{1}{2}} \right)$$
D $$x + \frac{1}{5} = - \frac{3}{4}\left( {y + \frac{1}{2}} \right)$$
Answer :   $$y - \frac{1}{5} = - \frac{3}{4}\left( {x - \frac{1}{2}} \right)$$

34. The number of points $$\left( {a,\,b} \right),$$  where $$a$$ and $$b$$ are positive integers lying on the hyperbola $${x^2} - {y^2} = 512$$    is :

A $$3$$
B $$4$$
C $$5$$
D $$6$$
Answer :   $$4$$

35. Tangents at any point on the hyperbola $$\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$$   cut the axes at $$A$$ and $$B$$ respectively. If the rectangle $$OAPB$$   (where $$O$$ is the origin) is completed, then locus of point $$P$$ is given by :

A $$\frac{{{a^2}}}{{{x^2}}} - \frac{{{b^2}}}{{{y^2}}} = 1$$
B $$\frac{{{a^2}}}{{{x^2}}} + \frac{{{b^2}}}{{{y^2}}} = 1$$
C $$\frac{{{a^2}}}{{{y^2}}} - \frac{{{b^2}}}{{{x^2}}} = 1$$
D None of these
Answer :   $$\frac{{{a^2}}}{{{x^2}}} - \frac{{{b^2}}}{{{y^2}}} = 1$$

36. A hyperbola having the transverse axis of length $$2\,\sin \,\theta ,$$   is confocal with the ellipse $$3{x^2} + 4{y^2} = 12.$$    Then its equation is :

A $${x^2}{\text{cose}}{{\text{c}}^2}\theta - {y^2}{\sec ^2}\theta = 1$$
B $${x^2}{\sec ^2}\theta - {y^2}{\text{cose}}{{\text{c}}^2}\theta = 1$$
C $${x^2}{\sin ^2}\theta - {y^2}{\cos ^2}\theta = 1$$
D $${x^2}{\cos ^2}\theta - {y^2}{\sin ^2}\theta = 1$$
Answer :   $${x^2}{\text{cose}}{{\text{c}}^2}\theta - {y^2}{\sec ^2}\theta = 1$$

37. The locus of a point $$P\left( {\alpha ,\,\beta } \right)$$  moving under the condition that the line $$y = \alpha x + \beta $$   is a tangent to the hyperbola $$\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$$   is :

A a circle
B an ellipse
C a hyperbola
D a parabola
Answer :   a hyperbola