Chemical Thermodynamics MCQ Questions & Answers in Physical Chemistry | Chemistry
Learn Chemical Thermodynamics MCQ questions & answers in Physical Chemistry are available for students perparing for IIT-JEE, NEET, Engineering and Medical Enternace exam.
291.
A system changes from state $$X$$ to $$Y$$ with a change in internal energy measuring to $$25\,kJ\,mo{l^{ - 1}},$$ by a reversible path and returns from $$Y$$ to $$X$$ by an irreversible path. What will be the net change in internal energy ?
A
$$25\,kJ$$
B
$$ > 25\,kJ$$
C
$$ < 25\,kJ$$
D
$${\text{Zero}}$$
Answer :
$${\text{Zero}}$$
For a cyclic process, net change in internal energy is zero. Change in internal energy does not depend on the path by which final stage is reached.
292.
Among the following the state function(s) is (are)
(i) Internal energy
(ii) Irreversible expansion work
(iii) Reversible expansion work
(iv) Molar enthalpy
A
(ii) and (iii)
B
(i), (ii) and (iii)
C
(i) and (iv)
D
(i) only
Answer :
(i) and (iv)
Internal energy and molar enthalpy are state functions. Work (reversible or irreversible)
is a path function.
293.
The factor of $$\Delta G$$ values is important in metallurgy. The $$\Delta G$$ values for the following reactions at $${800^ \circ }C$$ are given as :
$${S_2}\left( s \right) + 2{O_2}\left( g \right) \to 2S{O_2}\left( g \right);$$ $$\Delta G = - 544\,kJ$$
$$2Zn\left( s \right) + {S_2}\left( s \right) \to 2ZnS\left( s \right);$$ $$\Delta G = - 293\,kJ$$
$$2Zn\left( s \right) + {O_2}\left( g \right) \to 2ZnO\left( s \right);$$ $$\Delta G = - 480\,kJ$$
$${\text{Then}}\,\Delta G\,{\text{for the reaction :}}$$
$$2ZnS\left( s \right) + 3{O_2}\left( g \right) \to $$ $$2ZnO\left( s \right) + 2S{O_2}\left( g \right)$$
will be :
294.
The standard enthalpy of formation $$\left( {{\Delta _f}{H^ \circ }_{298}} \right)$$ for methane, $$C{H_4}$$ is $$ - 74.9\,kJ\,mo{l^{ - 1}}.$$ In order to calculate the average energy given out in the formation of a $$C-H$$ bond from this it is necessary to know which one of the following ?
A
The dissociation energy of the hydrogen molecule, $${H_2}.$$
B
The first four ionisation energies of carbon.
C
The dissociation energy of $${H_2}$$ and enthalpy of sublimation of carbon (graphite).
D
The first four ionisation energies of carbon and electron affinity of hydrogen.
Answer :
The dissociation energy of $${H_2}$$ and enthalpy of sublimation of carbon (graphite).
To calculate average enthalpy of $$C – H$$ bond in methane following informations are needed
(i) dissociation energy of $${H_2}$$ i.e.
$$\frac{1}{2}{H_2}\left( g \right) \to H\left( g \right);\,\Delta H = x\left( {{\text{suppose}}} \right)$$
(ii) Sublimation energy of $$C\left( {graphite} \right)$$ to $$C\left( g \right)$$
$$\eqalign{
& C\left( {graphite} \right) \to C\left( g \right);\Delta H = y\left( {{\text{suppose}}} \right) \cr
& {\text{Given}} \cr
& C\left( {graphite} \right) + 2{H_2}\left( g \right) \to C{H_4}\left( g \right); \cr
& \Delta H = 75\,kJ\,mo{l^{ - 1}} \cr} $$
295.
If bond enthalpies of $$N \equiv N,H - H$$ and $$N - H$$ bonds are $${x_1},{x_2}$$ and $${x_3}$$ respectively, $$\Delta H_f^ \circ $$ for $$N{H_3}$$ will be
A
$${x_1} + 3{x_2} - 6{x_3}$$
B
$$\frac{1}{2}{x_1} + \frac{3}{2}{x_2} - 3{x_3}$$
C
$$3{x_3} - \frac{1}{2}{x_1} - \frac{3}{2}{x_2}$$
296.
An ideal gas occuping a volume of $$2d{m^3}$$ and a pressure of $$5\,bar$$ undergoes isothermal and irreversible expansion against external pressure of $$1\,bar$$ The final volume of the system and the work involved in the process is
297.
Consider the reversible isothermal expansion of an ideal gas in a closed system at two different temperatures $${T_1}$$ and $${T_2}$$ $$\left( {{T_1} < {T_2}} \right).$$ The correct graphical depiction of the dependence of work done $$(w)$$ on the final volume $$(V)$$ is :
A
B
C
D
Answer :
For reversible isothermal expansion,
$$\eqalign{
& w = - nRT\ln \frac{{{V_2}}}{{{V_1}}} \cr
& \therefore \,\left| w \right| = nRT\ln \frac{{{V_2}}}{{{V_1}}} \cr
& \left| w \right| = nRT\left( {\ln \,{V_2} - \ln {V_1}} \right) \cr
& \left| w \right| = nRT\ln \,{V_2} - nRT{V_1} \cr
& y = mx + c \cr} $$
So, slope of curve 2 is more than curve 1 and intercept of curve 2 is more negative than curve 1.
298.
The latent heat of vapourization of a liquid at $$500\,K$$ and $$1\,atm$$ pressure is $$10.0\,kcal/mol.$$ What will be the change in internal energy $$\left( {\Delta U} \right)$$ of $$3\,moles$$ of liquid at the same temperature
A
$$13.0\,kcal/mol$$
B
$$ - 13.0\,kcal/mol$$
C
$$27.0\,kcal$$
D
$$ - 7.0\,kcal/mol$$
Answer :
$$27.0\,kcal$$
$$\eqalign{
& 3{H_2}O\left( l \right) \to 3{H_2}O\left( g \right); \cr
& \Delta n = 3,\,\Delta E = \Delta H - \Delta nRT \cr
& = 30 - 3 \times \frac{2}{{1000}} \times 500 \cr
& = 27\,kcal \cr} $$
299.
Match the column I with column II and mark the appropriate choice.
Column I
Column II
a.
$${H_{2\left( g \right)}} + B{r_{2\left( g \right)}} \to 2HB{r_{\left( g \right)}}$$
1.
$$\Delta H = \Delta U - 2RT$$
b.
$$PC{l_{5\left( g \right)}} \to PC{l_{3\left( g \right)}} + C{l_{2\left( g \right)}}$$
2.
$$\Delta H = \Delta U + 3RT$$
c.
$${N_{2\left( g \right)}} + 3{H_{2\left( g \right)}} \to 2N{H_{3\left( g \right)}}$$
3.
$$\Delta H = \Delta U$$
d.
$$2{N_2}{O_{5\left( g \right)}} \to 4N{O_{2\left( g \right)}} + {O_{2\left( g \right)}}$$
300.
Given the following entropy values $$\left( {{\text{in}}\,J{K^{ - 1}}\,mo{l^{ - 1}}} \right)$$ at $$298\,K$$ and $$1\,atm:{H_2}\left( g \right):130.6,$$ $$C{l_2}\left( g \right):223.0,$$ $$HCl\left( g \right):186.7.$$ The entropy change $$\left( {{\text{in}}\,J{K^{ - 1}}\,mo{l^{ - 1}}} \right)$$ for the reaction
$${H_2}\left( g \right) + C{l_2}\left( g \right) \to 2HCl\left( g \right),$$ is