Sequences and Series MCQ Questions & Answers in Algebra | Maths

Learn Sequences and Series MCQ questions & answers in Algebra are available for students perparing for IIT-JEE and engineering Enternace exam.

151. The sum of all odd proper divisors of 360 is

A 77
B 78
C 81
D none of these
Answer :   77

152. If $$\frac{1}{{\sqrt b + \sqrt c }},\frac{1}{{\sqrt c + \sqrt a }},\frac{1}{{\sqrt a + \sqrt b }}$$       are in A.P. then $${9^{ax + 1}},{9^{bx + 1}},{9^{cx + 1}},x \ne 0{\text{ are in :}}$$

A G.P.
B G.P. only if $$x < 0$$
C G.P. only if $$x > 0$$
D None of these
Answer :   G.P.

153. If $$a + b+ c = 3$$   and $$a > 0, b > 0, c > 0$$    then the greatest value of $${a^2}{b^3}{c^2}$$  is

A $$\frac{{{3^{10}} \cdot {2^4}}}{{{7^7}}}$$
B $$\frac{{{3^{9}} \cdot {2^4}}}{{{7^7}}}$$
C $$\frac{{{3^{8}} \cdot {2^4}}}{{{7^7}}}$$
D None of these
Answer :   $$\frac{{{3^{10}} \cdot {2^4}}}{{{7^7}}}$$

154. If $$x = \sum\limits_{n = 0}^\infty {{a^n}} ,y = \sum\limits_{n = 0}^\infty {{b^n}} ,z = \sum\limits_{n = 0}^\infty {{c^n}} $$       where $$a, b, c$$   are in A.P. and $$\left| a \right| < 1,\left| b \right| < 1,\left| c \right| < 1$$     then $$x, y, z$$   are in

A G.P.
B A.P.
C Arithmetic - Geometric Progression
D H.P.
Answer :   H.P.

155. For any three positive real numbers $$a, b$$  and $$c,$$ $$9\left( {25{{{a}}^2} + {{{b}}^2}} \right) + 25\left( {{{{c}}^2} - 3{{ac}}} \right) = 15{{b}}\left( {3{{a}} + {{c}}} \right).$$         Then:

A $$a, b$$  and $$c$$ are in G.P.
B $$b, c$$  and $$a$$ are in G.P.
C $$b, c$$  and $$a$$ are in A.P.
D $$a, b$$  and $$c$$ are in A.P.
Answer :   $$b, c$$  and $$a$$ are in A.P.

156. $$a, b, c$$  are the first three terms of a geometric series. If the harmonic mean of $$a$$ and $$b$$ is 12 and that of $$b$$ and $$c$$ is 36, then the first five terms of the series are

A $$9, 18, 27, 36, 45$$
B $$8, 24, 72, 216, 648$$
C $$4, 22, 38, 46$$
D None of these
Answer :   $$8, 24, 72, 216, 648$$

157. If the $${p^{th}}$$ term of an A.P. be $$\frac{1}{q}$$ and $${q^{th}}$$ term be $$\frac{1}{p},$$ then the sum of its $${pq^{th}}$$ terms will be

A $$\frac{{pq - 1}}{2}$$
B $$\frac{{1 - pq }}{2}$$
C $$\frac{{pq + 1}}{2}$$
D $$ - \frac{{pq + 1}}{2}$$
Answer :   $$\frac{{pq + 1}}{2}$$

158. The value of the infinite product $${6^{\frac{1}{2}}} \times {6^{\frac{1}{2}}} \times {6^{\frac{3}{8}}} \times {6^{\frac{1}{4}}} \times ....\,{\text{is}}$$

A $$6$$
B $$36$$
C $$216$$
D $$\infty $$
Answer :   $$216$$

159. The sum of the series $$1 + \frac{1}{{4.2!}} + \frac{1}{{16.4!}} + \frac{1}{{64.4!}} + ......{\text{ ad inf}}{\text{. is}}$$

A $$\frac{{e - 1}}{{\sqrt e }}$$
B $$\frac{{e + 1}}{{\sqrt e }}$$
C $$\frac{{e - 1}}{{2\sqrt e }}$$
D $$\frac{{e + 1}}{{2\sqrt e }}$$
Answer :   $$\frac{{e + 1}}{{2\sqrt e }}$$

160. The sum of first 9 terms of the series. $$\frac{{{1^3}}}{1} + \frac{{{1^3} + {2^3}}}{{1 + 3}} + \frac{{{1^3} + {2^3} + {3^3}}}{{1 + 3 + 5}} + ......$$

A 142
B 192
C 71
D 96
Answer :   96