152.
If $$\frac{1}{{\sqrt b + \sqrt c }},\frac{1}{{\sqrt c + \sqrt a }},\frac{1}{{\sqrt a + \sqrt b }}$$ are in A.P. then $${9^{ax + 1}},{9^{bx + 1}},{9^{cx + 1}},x \ne 0{\text{ are in :}}$$
A
G.P.
B
G.P. only if $$x < 0$$
C
G.P. only if $$x > 0$$
D
None of these
Answer :
G.P.
$$\eqalign{
& \frac{2}{{\sqrt c + \sqrt a }} = \frac{1}{{\sqrt b + \sqrt c }} + \frac{1}{{\sqrt a + \sqrt b }} \cr
& = \frac{{2\sqrt b + \sqrt a + \sqrt c }}{{\left( {\sqrt b + \sqrt c } \right)\left( {\sqrt a + \sqrt b } \right)}} \cr
& \Rightarrow 2\sqrt {ab} + 2b + 2\sqrt {ac} + 2\sqrt {bc} \cr
& = 2\sqrt {bc} + 2\sqrt {ac} + c + 2\sqrt {ab} + a \cr
& \Rightarrow 2b = a + c \cr
& \therefore a,b,c{\text{ are in A}}{\text{.P}}{\text{.}} \cr
& \Rightarrow ax,bx,cx{\text{ are in A}}{\text{.P}}{\text{.}} \cr
& \Rightarrow ax + 1,bx + 1,cx + 1{\text{ are in A}}{\text{.P}}{\text{.}} \cr
& \Rightarrow {{\text{9}}^{ax + 1}},{9^{bx + 1}},{9^{cx + 1}}{\text{ are in G}}{\text{.P}}{\text{.}} \cr} $$
[See the properties of A.P & G.P.]
153.
If $$a + b+ c = 3$$ and $$a > 0, b > 0, c > 0$$ then the
greatest value of $${a^2}{b^3}{c^2}$$ is
154.
If $$x = \sum\limits_{n = 0}^\infty {{a^n}} ,y = \sum\limits_{n = 0}^\infty {{b^n}} ,z = \sum\limits_{n = 0}^\infty {{c^n}} $$ where $$a, b, c$$ are in A.P. and $$\left| a \right| < 1,\left| b \right| < 1,\left| c \right| < 1$$ then $$x, y, z$$ are in
A
G.P.
B
A.P.
C
Arithmetic - Geometric Progression
D
H.P.
Answer :
H.P.
$$\eqalign{
& x = \sum\limits_{n = 0}^\infty {{a^n}} = \frac{1}{{1 - a}}\,\,\,\,\,\,\,\,\,\,a = 1 - \frac{1}{x} \cr
& y = \sum\limits_{n = 0}^\infty {{b^n}} = \frac{1}{{1 - b}}\,\,\,\,\,\,\,\,\,\,b = 1 - \frac{1}{y} \cr
& z = \sum\limits_{n = 0}^\infty {{c^n}} = \frac{1}{{1 - c}}\,\,\,\,\,\,\,\,\,\,\,c = 1 - \frac{1}{z} \cr
& a,b,c{\text{ are in A}}{\text{.P}}{\text{. OR 2}}b = a + c \cr
& 2\left( {1 - \frac{1}{y}} \right) = 1 - \frac{1}{x} + 1 - \frac{1}{y} \cr
& \frac{2}{y} = \frac{1}{x} + \frac{1}{z} \cr
& \Rightarrow \,\,x,y,z{\text{ are in H}}{\text{.P}}{\text{.}} \cr} $$
155.
For any three positive real numbers $$a, b$$ and $$c,$$ $$9\left( {25{{{a}}^2} + {{{b}}^2}} \right) + 25\left( {{{{c}}^2} - 3{{ac}}} \right) = 15{{b}}\left( {3{{a}} + {{c}}} \right).$$ Then:
156.
$$a, b, c$$ are the first three terms of a geometric series. If the harmonic mean of $$a$$ and $$b$$ is 12 and that of $$b$$ and $$c$$ is 36, then the first five terms of
the series are
158.
The value of the infinite product $${6^{\frac{1}{2}}} \times {6^{\frac{1}{2}}} \times {6^{\frac{3}{8}}} \times {6^{\frac{1}{4}}} \times ....\,{\text{is}}$$
160.
The sum of first 9 terms of the series. $$\frac{{{1^3}}}{1} + \frac{{{1^3} + {2^3}}}{{1 + 3}} + \frac{{{1^3} + {2^3} + {3^3}}}{{1 + 3 + 5}} + ......$$