Sequences and Series MCQ Questions & Answers in Algebra | Maths

Learn Sequences and Series MCQ questions & answers in Algebra are available for students perparing for IIT-JEE and engineering Enternace exam.

161. The sum to $$n$$ terms of the series $$2 + 5 +14 + 41 + . . . . .\,$$     is

A $${3^{n - 1}} + 8n - 3$$
B $${8.3^{n}} + 4n - 8$$
C $${3^{n + 1}} + \frac{8}{3}n + 1$$
D None of these
Answer :   None of these

162. The number $${\log _2}$$ $$7$$ is

A an integer
B a rational number
C an irrational number
D a prime number
Answer :   an irrational number

163. $$a, b, c$$  are in G.P. with $$1 < a < b < n,$$    and $$n > 1$$  is an integer. $${\log _a}n,{\log _b}n,{\log _c}n$$    form a sequence. This sequence is which one of the following ?

A Harmonic progression
B Arithmetic progression
C Geometric progression
D None of these
Answer :   Harmonic progression

164. If $${x^{\ln \left( {\frac{y}{z}} \right)}} \cdot {y^{\ln{{\left( {xz} \right)}^2}}} \cdot {z^{\ln\left( {\frac{x}{y}} \right)}} = {y^{4\,\ln\,y}}$$       for any $$x > 1, y > 1$$   and $$z > 1,$$  then which one of the following is correct?

A $$\ln\,y$$  is the GM of $$\ln\,x, \ln\,x, \ln\,x$$   and $$\ln\,z$$
B $$\ln\,y$$  is the AM of $$\ln\,x, \ln\,x, \ln\,x$$   and $$\ln\,z$$
C $$\ln\,y$$  is the HM of $$\ln\,x, \ln\,x$$  and $$\ln\,z$$
D $$\ln\,y$$  is the AM of $$\ln, \ln\,x, \ln\,z$$   and $$\ln\,z$$
Answer :   $$\ln\,y$$  is the AM of $$\ln\,x, \ln\,x, \ln\,x$$   and $$\ln\,z$$

165. The sum of series $$\frac{1}{{2!}} + \frac{1}{{4!}} + \frac{1}{{6!}} + ......{\text{ is}}$$

A $$\frac{{\left( {{e^2} - 2} \right)}}{e}$$
B $$\frac{{{{\left( {e - 1} \right)}^2}}}{{2e}}$$
C $$\frac{{\left( {{e^2} - 1} \right)}}{{2e}}$$
D $$\frac{{\left( {{e^2} - 1} \right)}}{2}$$
Answer :   $$\frac{{{{\left( {e - 1} \right)}^2}}}{{2e}}$$

166. In the value of $$100\, !$$  the number of zeros at the end is

A 11
B 22
C 23
D 24
Answer :   24

167. $${2^{\frac{1}{4}}} \cdot {4^{\frac{1}{8}}} \cdot {8^{\frac{1}{{16}}}} \cdot .....\,{\text{to }}\infty $$     is equal to

A $$1$$
B $$2$$
C $$\frac{3}{2}$$
D none of these
Answer :   $$1$$

168. If $${a_r} > 0,r \in N$$   and $${a_1},{a_2},{a_3},.....,{a_{2n}}$$    are in A.P. then $$\frac{{{a_1} + {a_{2n}}}}{{\sqrt {{a_1}} + \sqrt {{a_2}} }} + \frac{{{a_2} + {a_{2n - 1}}}}{{\sqrt {{a_2}} + \sqrt {{a_3}} }} + \frac{{{a_3} + {a_{2n - 2}}}}{{\sqrt {{a_3}} + \sqrt {{a_4}} }} + ..... + \frac{{{a_n} + {a_{n + 1}}}}{{\sqrt {{a_n}} + \sqrt {{a_{n + 1}}} }}$$             is equal to

A $$n - 1$$
B $$\frac{{n\left( {{a_1} + {a_{2n}}} \right)}}{{\sqrt {{a_1}} + \sqrt {{a_{n + 1}}} }}$$
C $$\frac{{n - 1}}{{\sqrt {{a_1}} + \sqrt {{a_{n + 1}}} }}$$
D none of these
Answer :   $$\frac{{n\left( {{a_1} + {a_{2n}}} \right)}}{{\sqrt {{a_1}} + \sqrt {{a_{n + 1}}} }}$$

169. There are four numbers of which the first three are in G.P. and the last three are in A.P., whose common difference is 6. If the first and the last numbers are equal then two other numbers are

A $$- 2, 4$$
B $$- 4, 2$$
C $$2, 6$$
D None
Answer :   $$- 4, 2$$

170. If the sum of the first ten terms of the series $${\left( {1\frac{3}{5}} \right)^2} + {\left( {2\frac{2}{5}} \right)^2} + {\left( {3\frac{1}{5}} \right)^2} + {4^2} + {\left( {4\frac{4}{5}} \right)^2} + .....,{\text{ is }}\frac{{16}}{5}m,$$            then $$m$$ is equal to:

A 100
B 99
C 102
D 101
Answer :   101