Sequences and Series MCQ Questions & Answers in Algebra | Maths
Learn Sequences and Series MCQ questions & answers in Algebra are available for students perparing for IIT-JEE and engineering Enternace exam.
171.
The product of $$n$$ positive numbers is 1. Their sum is
A
a positive integer
B
divisible by $$n$$
C
equal to $$n + \frac{1}{n}$$
D
greater than or equal to $$n$$
Answer :
greater than or equal to $$n$$
$$\eqalign{
& A = \frac{{{a_1} + {a_2} + ..... + {a_n}}}{n},G = \root n \of {{a_1}{a_2}.....{a_n}} = 1; \cr
& A \geqslant G \cr
& \Rightarrow \,\,{a_1} + {a_2} + ..... + {a_n} \geqslant n. \cr} $$
172.
If the first and the $${\left( {2n - 1} \right)^{th}}$$ terms of an AP, a GP and an HP are equal and their $$n^{th}$$ terms are $$a, b$$ and $$c$$ respectively then
A
$$a = b = c$$
B
$$a \geqslant b \geqslant c$$
C
$$a + c = b$$
D
$$ac - {b^2} = 0$$
Answer :
$$ac - {b^2} = 0$$
$${n^{th}}$$ term is the middle term in each case. So $$a, b, c$$ are the AM, GM, HM respectively of the same two numbers. For any two numbers AM, GM, HM are in GP.
173.
The rational number, which equals the number $$2.\overline {357} $$ with recurring decimal is
174.
If $${\log _e}5,{\log _e}\left( {{5^x} - 1} \right){\text{and }}{\log _e}\left( {{5^x} - \frac{{11}}{5}} \right)$$ are in A.P. then the values of $$x$$ are
176.
If $$a, b, c$$ are positive numbers, then least value of $$\left( {a + b + c} \right)\left( {\frac{1}{a} + \frac{1}{b} + \frac{1}{c}} \right)$$ is
177.
Suppose $$a, b, c$$ are in A.P. and $${a^2},{b^2},{c^2}$$ are in G.P. If $$a < b < c$$ and $$a + b + c = \frac{3}{2},$$ then the value of $$a$$ is
A
$$\frac{1}{{2\sqrt 2 }}$$
B
$$\frac{1}{{2\sqrt 3 }}$$
C
$$\frac{1}{2} - \frac{1}{{\sqrt 3 }}$$
D
$$\frac{1}{2} - \frac{1}{{\sqrt 2 }}$$
Answer :
$$\frac{1}{2} - \frac{1}{{\sqrt 2 }}$$
$$\eqalign{
& {\text{Given that }}a,b,c{\text{ are in A}}{\text{.P}}{\text{.}} \cr
& \Rightarrow \,\,{\text{2}}b = a + c \cr
& \Rightarrow \,\,{\text{but given }}a + b + c = \frac{3}{2} \cr
& \Rightarrow \,\,3b = \frac{3}{2} \cr
& \Rightarrow \,\,b = \frac{1}{2}{\text{ and then }}a + c = 1 \cr
& {\text{Again }}{a^2},{b^2},{c^2},{\text{ are in G}}{\text{.P}}{\text{.}} \cr
& \Rightarrow \,\,{b^4} = {a^2}{c^2} \cr
& \Rightarrow \,\,{b^2} = \pm ac \cr
& \Rightarrow \,\,ac = \frac{1}{4}{\text{ or }} - \frac{1}{4}\,\,{\text{and }}a + c = 1\,\,\,\,\,.....\left( 1 \right) \cr
& {\text{Considering }}a + c = 1{\text{ and }}ac = \frac{1}{4} \cr
& \Rightarrow \,\,{\left( {a - c} \right)^2} = 1 - 1 = 0 \cr
& \Rightarrow \,\,a = c{\text{ but }}a \ne c{\text{ as given that }}a < b < c \cr
& \therefore \,\,{\text{ We consider }}a + c = 1{\text{ and }}ac = - \frac{1}{4} \cr
& \Rightarrow \,\,{\left( {a - c} \right)^2} = 1 + 1 = 2 \cr
& \Rightarrow \,\,a - c = \pm \sqrt 2 \,\,{\text{but }}a < c \cr
& \Rightarrow \,\,a - c = - \sqrt 2 \,\,\,\,\,\,.....\left( 2 \right) \cr
& {\text{Solving }}\left( 1 \right){\text{ and }}\left( 2 \right){\text{ we get }}a = \frac{1}{2} - \frac{1}{{\sqrt 2 }} \cr} $$
178.
The sum of $$i - 2 - 3i + 4....\,{\text{upto }}100\,{\text{terms,}}$$ where $$i = \sqrt { - 1} $$ is