Sequences and Series MCQ Questions & Answers in Algebra | Maths
Learn Sequences and Series MCQ questions & answers in Algebra are available for students perparing for IIT-JEE and engineering Enternace exam.
11.
If $$m^{th}$$ terms of the series $$63 + 65 + 67 + 69 + . . . . .\,$$ and $$3 + 10 +17 + 24 + . . . . .\,$$ be equal, then $$m =$$
A
11
B
12
C
13
D
15
Answer :
13
Given series $$63 + 65 + 67 + 69 \,. . . .\,\,\,\, …\left( {\text{i}} \right)$$
and $$3 + 10 + 17 + 24 \,. . . . \,\,\,\, …\left( {\text{ii}} \right)$$
Now from (i), $$m^{th}$$ term $$ = \left( {2m + 61} \right)$$
and $$m^{th}$$ term of (ii) series $$ = \left( {7m - 4} \right)$$
Under condition
⇒ $$7m - 4 = 2m + 61$$
⇒ $$5m = 65$$
⇒ $$m = 13.$$
12.
It is known that $$\sum\limits_{r = 1}^\infty {\frac{1}{{{{\left( {2r - 1} \right)}^2}}} = \frac{{{\pi ^2}}}{8}.} $$ Then $$\sum\limits_{r = 1}^\infty {\frac{1}{{{r^2}}}} $$ is equal to
15.
If $$a, b$$ and $$c$$ are in H. P. then the value of $$\left( {\frac{1}{b} + \frac{1}{c} - \frac{1}{a}} \right)\left( {\frac{1}{c} + \frac{1}{a} - \frac{1}{b}} \right){\text{is :}}$$
16.
If $${a_1},{a_2},{a_3},.....$$ are in A.P. then $${a_p},{a_q},{a_r}$$ are in A.P. if $$p,q,r$$ are in
A
A.P.
B
G.P.
C
H.P.
D
None of these
Answer :
A.P.
If $$p, q, r$$ are in A.P. then in an A.P. or a G.P. or an H.P. $${a_1},{a_2},{a_3},.....,$$ etc., the terms $${a_p},{a_q},{a_r}$$ are in A.P., G.P. or H.P. respectively.
17.
The $$100^{th}$$ term of the sequence $$1, 2, 2, 3, 3, 3, 4, 4, 4, 4, . . . . .$$ is
A
12
B
13
C
14
D
15
Answer :
14
$$1^{st}$$ term $$→ 1,$$ $$2^{nd}$$ term $$= 2,$$ $$4^{th}$$ term $$→ 3,$$ $$7^{th}$$ term $$→ 4,$$ $$11^{th}$$ term $$→ 5, . . . . .$$
Series is $$1, 2, 4, 7, 11, . . . . .$$
$${a_n} = 1 + \frac{{n\left( {n - 1} \right)}}{2} = \frac{{{n^2} - n + 2}}{2}$$
If $$n = 14,$$ then $$a_n = 92,$$
If $$n = 15,$$ then $$a_n = 106.$$
18.
Observe that $${1^3} = 1,{2^3} = 3 + 5,{3^3} = 7 + 9 + 11,{4^3} = 13 + 15 + 17 + 19.$$ Then $${n^3}$$ as a similar series is
19.
Let $$A$$ be the sum of the first 20 terms and $$B$$ be the sum of the first 40 terms of the series $${1^2} + {2.2^2} + {3^2} + {2.4^2} + {5^2} + {2.6^2} + .....$$ If $$B - 2A = 100\lambda ,$$ $${\text{then }}\lambda {\text{ is equal to}}$$ :
20.
The harmonic mean $$H$$ of two numbers is 4 and the arithmetic mean $$A$$ and geometric mean $$G$$ satisfy the equation $$2A + G^2 = 27.$$ The two numbers are
A
6, 3
B
9, 5
C
12, 7
D
3, 1
Answer :
6, 3
Let two numbers be $$a$$ and $$b.$$
Given, $$\frac{{2ab}}{{a + b}} = 4$$
$$\eqalign{
& \Rightarrow ab = 2\left( {a + b} \right) \cr
& 2A + {G^2} = 27 \cr
& \Rightarrow 2\left( {\frac{{a + b}}{2}} \right) + ab = 27 \cr
& \Rightarrow ab = 18{\text{ and }}a + b = 9 \cr
& \Rightarrow ab = 9 \cr} $$
On solving these we get
$$a = 3\,\,\&\,\, b = 6\,\,{\text{or }}a = 6\,\,\&\,\, b = 3.$$