Sequences and Series MCQ Questions & Answers in Algebra | Maths

Learn Sequences and Series MCQ questions & answers in Algebra are available for students perparing for IIT-JEE and engineering Enternace exam.

201. If $$a, b, c$$  are in G.P., then

A $${{a^2},{b^2},{c^2}{\text{ are in G}}{\text{.P}}{\text{.}}}$$
B $${a^2}\left( {b + c} \right),{c^2}\left( {a + b} \right),{b^2}\left( {a + c} \right){\text{are in G}}{\text{.P}}{\text{.}}$$
C $$\frac{a}{{b + c}},\frac{b}{{c + a}},\frac{c}{{a + b}}{\text{are in G}}{\text{.P}}{\text{.}}$$
D None of these
Answer :   $${{a^2},{b^2},{c^2}{\text{ are in G}}{\text{.P}}{\text{.}}}$$

202. If$$,$$ $$8, - 4$$  and $$13$$ be three (not necessarily consecutive term) of an A.P.$$,$$ how many such A.P. $$s$$ are possible ?

A 1
B 2
C infinitely many
D no such A.P. is possible
Answer :   infinitely many

203. It is given that $$\frac{1}{{{1^4}}} + \frac{1}{{{2^4}}} + \frac{1}{{{3^4}}} + .....\,{\text{to }}\infty = \frac{{{\pi ^4}}}{{90}}.$$       Then $$\frac{1}{{{1^4}}} + \frac{1}{{{3^4}}} + \frac{1}{{{5^4}}} + .....\,{\text{to }}\infty $$      is equal to

A $$\frac{{{\pi ^4}}}{{96}}$$
B $$\frac{{{\pi ^4}}}{{45}}$$
C $$\frac{{{89\pi ^4}}}{{90}}$$
D none of these
Answer :   $$\frac{{{\pi ^4}}}{{96}}$$

204. The interior angles of a convex polygon are in A.P., the common difference being $${5^ \circ }.$$ If the smallest angle is $$\frac{{2\pi }}{3}$$  then the number of sides is

A 9
B 16
C 7
D none of these
Answer :   9

205. The first two terms of a geometric progression add up to 12. the sum of the third and the fourth terms is 48. If the terms of the geometric progression are alternately positive and negative, then the first term is

A $$- 4$$
B $$- 12$$
C $$12$$
D $$4$$
Answer :   $$- 12$$

206. Let $$f\left( x \right) = 2x + 1.$$   Then the number of real values of $$x$$ for which the three unequal numbers $$f\left( x \right),f\left( {2x} \right),f\left( {4x} \right)$$    are in G.P. is

A 1
B 2
C 0
D none of these
Answer :   0

207. What is the sum of the series $$0.5 + 0.55 + 0.555 + . . . . .$$     to $$n$$ terms?

A $$\frac{5}{9}\left[ {n - \frac{2}{9}\left( {1 - \frac{1}{{{{10}^n}}}} \right)} \right]$$
B $$\frac{1}{9}\left[ {5 - \frac{2}{9}\left( {1 - \frac{1}{{{{10}^n}}}} \right)} \right]$$
C $$\frac{1}{9}\left[ {n - \frac{5}{9}\left( {1 - \frac{1}{{{{10}^n}}}} \right)} \right]$$
D $$\frac{5}{9}\left[ {n - \frac{1}{9}\left( {1 - \frac{1}{{{{10}^n}}}} \right)} \right]$$
Answer :   $$\frac{5}{9}\left[ {n - \frac{1}{9}\left( {1 - \frac{1}{{{{10}^n}}}} \right)} \right]$$

208. Let $${S_k} = \mathop {\lim }\limits_{n \to \infty } \sum\limits_{i = 0}^n {\frac{1}{{{{\left( {k + 1} \right)}^i}}}.} $$     Then $$\sum\limits_{k = 1}^n {k{S_k}} $$  equals

A $$\frac{{n\left( {n + 1} \right)}}{2}$$
B $$\frac{{n\left( {n - 1} \right)}}{2}$$
C $$\frac{{n\left( {n + 2} \right)}}{2}$$
D $$\frac{{n\left( {n + 3} \right)}}{2}$$
Answer :   $$\frac{{n\left( {n + 3} \right)}}{2}$$

209. If $$n$$ is an odd integer greater than or equal to 1 then the value of $${n^3} - {\left( {n - 1} \right)^3} + {\left( {n - 2} \right)^3} - ..... + {\left( { - 1} \right)^{n - 1}} \cdot {1^3}$$         is

A $$\frac{{{{\left( {n + 1} \right)}^2} \cdot \left( {2n - 1} \right)}}{4}$$
B $$\frac{{{{\left( {n - 1} \right)}^2} \cdot \left( {2n - 1} \right)}}{4}$$
C $$\frac{{{{\left( {n + 1} \right)}^2} \cdot \left( {2n + 1} \right)}}{4}$$
D none of these
Answer :   $$\frac{{{{\left( {n + 1} \right)}^2} \cdot \left( {2n - 1} \right)}}{4}$$

210. If the sum of the first $$2n$$ terms of the A.P. 2, 5, 8, . . . . , is equal to the sum of the first $$n$$ terms of the A.P. 57, 59, 61, . . . . , then $$n$$ equals

A 10
B 12
C 11
D 13
Answer :   11