Sequences and Series MCQ Questions & Answers in Algebra | Maths
Learn Sequences and Series MCQ questions & answers in Algebra are available for students perparing for IIT-JEE and engineering Enternace exam.
201.
If $$a, b, c$$ are in G.P., then
A
$${{a^2},{b^2},{c^2}{\text{ are in G}}{\text{.P}}{\text{.}}}$$
B
$${a^2}\left( {b + c} \right),{c^2}\left( {a + b} \right),{b^2}\left( {a + c} \right){\text{are in G}}{\text{.P}}{\text{.}}$$
C
$$\frac{a}{{b + c}},\frac{b}{{c + a}},\frac{c}{{a + b}}{\text{are in G}}{\text{.P}}{\text{.}}$$
D
None of these
Answer :
$${{a^2},{b^2},{c^2}{\text{ are in G}}{\text{.P}}{\text{.}}}$$
$$\eqalign{
& \because a,b,c{\text{ are in G}}{\text{.P}}{\text{.}} \cr
& \therefore \frac{b}{a} = \frac{c}{b} = r \cr
& \Rightarrow \frac{{{b^2}}}{{{a^2}}} = \frac{{{c^2}}}{{{b^2}}} = {r^2} \cr
& \Rightarrow {a^2},{b^2},{c^2}{\text{ are in G}}{\text{.P}}{\text{.}} \cr} $$
202.
If$$,$$ $$8, - 4$$ and $$13$$ be three (not necessarily consecutive term) of an A.P.$$,$$ how many such A.P. $$s$$ are possible ?
A
1
B
2
C
infinitely many
D
no such A.P. is possible
Answer :
infinitely many
Since an A.P. is either increasing or decreasing, if possible let $$– 4$$ be the first term of an A.P., whose $$m^{th}$$ and $$n^{th}$$ terms are respectively 8 and 13. Then
$$\eqalign{
& 8 = - 4 + \left( {m - 1} \right)d\,\,{\text{and }}13 = - 4 + \left( {n - 1} \right)d \cr
& \Rightarrow \frac{{12}}{{m - 1}} = \frac{{17}}{{n - 1}} = d \cr
& {\text{Let }}\frac{{m - 1}}{{12}} = \frac{{n - 1}}{{17}} = k,\,{\text{then }}m = 12k + 1,\,{\text{and }}n = 17\,k + 1 \cr} $$
∴ for $$k = 1, 2, 3, .....$$ we get different pairs of values of $$m$$ and $$n,$$ which shows that infinite number of A.P.’s can be obtained
203.
It is given that $$\frac{1}{{{1^4}}} + \frac{1}{{{2^4}}} + \frac{1}{{{3^4}}} + .....\,{\text{to }}\infty = \frac{{{\pi ^4}}}{{90}}.$$ Then $$\frac{1}{{{1^4}}} + \frac{1}{{{3^4}}} + \frac{1}{{{5^4}}} + .....\,{\text{to }}\infty $$ is equal to
204.
The interior angles of a convex polygon are in A.P., the common difference being $${5^ \circ }.$$ If the smallest angle is $$\frac{{2\pi }}{3}$$ then the number of sides is
A
9
B
16
C
7
D
none of these
Answer :
9
We know sum of all interior angles of a polygon having $$n$$ sides $$ = \left( {n - 2} \right){180^ \circ }$$
Given smallest angle $$ = {120^ \circ }$$
$$\eqalign{
& a = 120 \cr
& d = 5 \cr
& {\text{Sum, }}S = \left( {\frac{n}{2}} \right)\left( {2a + \left( {n - 1} \right)d} \right) \cr
& \left( {\frac{n}{2}} \right)\left( {240 + \left( {n - 1} \right)5} \right) = \left( {n - 2} \right){180^ \circ } \cr
& n\left( {240 + 5n - 5} \right) = \left( {n - 2} \right){360^ \circ } \cr
& 5{n^2} + 235n - 360n + 720 = 0 \cr
& 5{n^2} - 125n + 720 = 0 \cr
& {n^2} - 25n + 144 = 0 \cr
& \left( {n - 9} \right)\left( {n - 16} \right) = 0 \cr
& \therefore \,n = 9{\text{ or }}16 \cr} $$
$$n=16$$ cannot be possible since interior angle cannot be greater than $${180^ \circ }$$
Hence option A is the answer.
205.
The first two terms of a geometric progression add up to 12. the sum of the third and the fourth terms is 48. If the terms of the geometric progression are alternately positive and negative, then the first term is
206.
Let $$f\left( x \right) = 2x + 1.$$ Then the number of real values of $$x$$ for which the three unequal numbers $$f\left( x \right),f\left( {2x} \right),f\left( {4x} \right)$$ are in G.P. is
A
1
B
2
C
0
D
none of these
Answer :
0
$$2x + 1, 4x + 1, 8x +1$$ are in G.P.
$$ \Rightarrow \,\,{\left( {4x + 1} \right)^2} = \left( {2x + 1} \right)\left( {8x + 1} \right)$$
⇒ $$x = 0$$ and for this value $$f\left( x \right),f\left( {2x} \right),f\left( {4x} \right)$$ are equal.
207.
What is the sum of the series $$0.5 + 0.55 + 0.555 + . . . . .$$ to $$n$$ terms?
A
$$\frac{5}{9}\left[ {n - \frac{2}{9}\left( {1 - \frac{1}{{{{10}^n}}}} \right)} \right]$$
B
$$\frac{1}{9}\left[ {5 - \frac{2}{9}\left( {1 - \frac{1}{{{{10}^n}}}} \right)} \right]$$
C
$$\frac{1}{9}\left[ {n - \frac{5}{9}\left( {1 - \frac{1}{{{{10}^n}}}} \right)} \right]$$
D
$$\frac{5}{9}\left[ {n - \frac{1}{9}\left( {1 - \frac{1}{{{{10}^n}}}} \right)} \right]$$
209.
If $$n$$ is an odd integer greater than or equal to 1 then the value of $${n^3} - {\left( {n - 1} \right)^3} + {\left( {n - 2} \right)^3} - ..... + {\left( { - 1} \right)^{n - 1}} \cdot {1^3}$$ is
210.
If the sum of the first $$2n$$ terms of the A.P. 2, 5, 8, . . . . , is equal to the sum of the first $$n$$ terms of the A.P. 57, 59, 61, . . . . , then $$n$$ equals