Sequences and Series MCQ Questions & Answers in Algebra | Maths
Learn Sequences and Series MCQ questions & answers in Algebra are available for students perparing for IIT-JEE and engineering Enternace exam.
21.
The sum of an infinite G.P. is $$x$$ and the common ratio $$r$$ is such that $$\left| r \right| < 1.$$ If the first term of the G.P. is 2, then which one of the following is correct ?
A
$$ - 1 < x < 1$$
B
$$ - \infty < x < 1$$
C
$$ 1 < x < \infty$$
D
None of these
Answer :
$$ 1 < x < \infty$$
$${\text{G}}{\text{.P}}{\text{.}} = x$$
$$\frac{a}{{1 - r}} = x$$ ( where, $$a = {1^{st}}$$ term and $$r$$ = common ratio )
$$\eqalign{
& \Rightarrow \frac{2}{{1 - r}}x\,\,\,.....\left( {\text{i}} \right)\,\,\left( {\because {\text{Given }}a = 2{\text{ and }}\left| r \right| < 1} \right) \cr
& \Rightarrow - 1 < r < 1 \cr
& \Rightarrow 1 > - r < - 1 \cr
& \Rightarrow 1 + 1 > 1 - r > 1 - 1 \cr
& \Rightarrow 0 < 1 - r < 2 \cr
& \Rightarrow \frac{1}{{1 - r}} > \frac{1}{2},\frac{2}{{1 - r}} > 1 \cr} $$
from equation (i) $$x > 1$$
Hence, $$1 < x < \infty .$$
22.
Sum of the first $$n$$ terms of the series $$\frac{1}{2} + \frac{3}{4} + \frac{7}{8} + \frac{{15}}{{16}} + ......$$ is equal to
23.
Let there be a GP whose first term is $$a$$ and the common ratio is $$r.$$ If $$A$$ and $$H$$ are the arithmetic mean and the harmonic mean respectively for the
first $$n$$ terms of the GP, $$A \cdot H$$ is equal to
24.
If $$\left| x \right| < \frac{1}{2},$$ what is the value of $$1 + n\left[ {\frac{x}{{1 - x}}} \right] + \left[ {\frac{{n\left( {n + 1} \right)}}{{2\,!}}} \right]{\left[ {\frac{x}{{1 - x}}} \right]^2} + .....\,\infty \,?$$
A
$${\left[ {\frac{{1 - x}}{{1 - 2x}}} \right]^n}$$
B
$${\left( {1 - x} \right)^n}$$
C
$${\left[ {\frac{{1 - 2x}}{{1 - x}}} \right]^n}$$
Given that $$1 + n\left[ {\frac{x}{{1 - x}}} \right] + \left[ {\frac{{n\left( {n + 1} \right)}}{{2\,!}}} \right]{\left[ {\frac{x}{{1 - x}}} \right]^2} + .....\,\infty\,\, $$ is expansion of $${\left[ {1 - \frac{x}{{1 - x}}} \right]^{ - n}}.$$
So, it is $$ = {\left[ {1 - \frac{x}{{1 - x}}} \right]^{ - n}}$$
$$ = {\left[ {\frac{{1 - x - x}}{{1 - x}}} \right]^{ - n}} = {\left[ {\frac{{1 - x}}{{1 - 2x}}} \right]^n}$$
25.
A man saves Rs. 200 in each of the first three months of his service. In each of the subsequent months his saving increases by Rs. 40 more than the saving of immediately previous month. His total saving from the start of service will be Rs. 11040 after
27.
If $$a, b, c$$ are in A. P., then $$\left( {a + 2b - c} \right)\left( {2b + c - a} \right)\left( {c + a - b} \right)$$ equals
A
$$\frac{1}{2}abc$$
B
$$abc$$
C
$$2\,abc$$
D
$$4\,abc$$
Answer :
$$4\,abc$$
$$2b = a + c,$$ so the given expression is
$$\left( {a + a + c - c} \right)\left( {a + c + c - a} \right)\left( {2b - b} \right) = 4\,abc$$
28.
The roots of the equation $${\left| {x - 1} \right|^2} - 4\left| {x - 1} \right| + 3 = 0$$
A
form an A.P.
B
form a G.P.
C
form an H.P.
D
do not form any progression
Answer :
form an A.P.
The given eq. can be written as
$$\eqalign{
& {\left| {x - 1} \right|^2} - 4\left| {x - 1} \right| + 3 = 0 \cr
& \Rightarrow \left( {\left| {x - 1} \right| - 3} \right)\left( {\left| {x - 1} \right| - 1} \right) = 0 \cr
& {\text{If }}\left| {x - 1} \right| - 3 = 0 \cr
& \Rightarrow x - 1 = \pm 3 \cr
& \Rightarrow x = - 2\,\,{\text{or 4}} \cr
& {\text{If }}\left| {x - 1} \right| - 1 = 0 \cr
& \Rightarrow x - 1 = \pm 1 \cr
& \Rightarrow x = 0\,\,{\text{or 2}} \cr} $$
The four roots are $$– 2, 0, 2, 4$$ and are in A.P.
29.
What is the greatest value of the positive integer $$n$$ satisfying the condition $$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + .... + \frac{1}{{{2^{n - 1}}}} < 2 - \frac{1}{{1000}}?$$