Sequences and Series MCQ Questions & Answers in Algebra | Maths

Learn Sequences and Series MCQ questions & answers in Algebra are available for students perparing for IIT-JEE and engineering Enternace exam.

21. The sum of an infinite G.P. is $$x$$ and the common ratio $$r$$ is such that $$\left| r \right| < 1.$$  If the first term of the G.P. is 2, then which one of the following is correct ?

A $$ - 1 < x < 1$$
B $$ - \infty < x < 1$$
C $$ 1 < x < \infty$$
D None of these
Answer :   $$ 1 < x < \infty$$

22. Sum of the first $$n$$ terms of the series $$\frac{1}{2} + \frac{3}{4} + \frac{7}{8} + \frac{{15}}{{16}} + ......$$      is equal to

A $${2^n} - n - 1$$
B $$1 - {2^{ - n}}$$
C $$n + {2^{ - n}} - 1$$
D $${2^n} + 1$$
Answer :   $$n + {2^{ - n}} - 1$$

23. Let there be a GP whose first term is $$a$$ and the common ratio is $$r.$$ If $$A$$ and $$H$$ are the arithmetic mean and the harmonic mean respectively for the first $$n$$ terms of the GP, $$A \cdot H$$  is equal to

A $${a^2}{r^{n - 1}}$$
B $${a}{r^n}$$
C $${a^2}{r^n}$$
D none of these
Answer :   $${a^2}{r^{n - 1}}$$

24. If $$\left| x \right| < \frac{1}{2},$$  what is the value of $$1 + n\left[ {\frac{x}{{1 - x}}} \right] + \left[ {\frac{{n\left( {n + 1} \right)}}{{2\,!}}} \right]{\left[ {\frac{x}{{1 - x}}} \right]^2} + .....\,\infty \,?$$

A $${\left[ {\frac{{1 - x}}{{1 - 2x}}} \right]^n}$$
B $${\left( {1 - x} \right)^n}$$
C $${\left[ {\frac{{1 - 2x}}{{1 - x}}} \right]^n}$$
D $${\left( {\frac{1}{{1 - x}}} \right)^n}$$
Answer :   $${\left[ {\frac{{1 - x}}{{1 - 2x}}} \right]^n}$$

25. A man saves Rs. 200 in each of the first three months of his service. In each of the subsequent months his saving increases by Rs. 40 more than the saving of immediately previous month. His total saving from the start of service will be Rs. 11040 after

A 19 months
B 20 months
C 21 months
D 18 months
Answer :   21 months

26. $$2 + 4 + 7 + 11 + 16 + . . . . .\,$$     to $$n$$ terms =

A $$\frac{1}{6}\left( {{n^2} + 3n + 8} \right)$$
B $$\frac{n}{6}\left( {{n^2} + 3n + 8} \right)$$
C $$\frac{1}{6}\left( {{n^2} - 3n + 8} \right)$$
D $$\frac{n}{6}\left( {{n^2} - 3n + 8} \right)$$
Answer :   $$\frac{n}{6}\left( {{n^2} + 3n + 8} \right)$$

27. If $$a, b, c$$  are in A. P., then $$\left( {a + 2b - c} \right)\left( {2b + c - a} \right)\left( {c + a - b} \right)$$       equals

A $$\frac{1}{2}abc$$
B $$abc$$
C $$2\,abc$$
D $$4\,abc$$
Answer :   $$4\,abc$$

28. The roots of the equation $${\left| {x - 1} \right|^2} - 4\left| {x - 1} \right| + 3 = 0$$

A form an A.P.
B form a G.P.
C form an H.P.
D do not form any progression
Answer :   form an A.P.

29. What is the greatest value of the positive integer $$n$$ satisfying the condition $$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + .... + \frac{1}{{{2^{n - 1}}}} < 2 - \frac{1}{{1000}}?$$

A 8
B 9
C 10
D 11
Answer :   10

30. If $${\left( {10} \right)^9} + 2{\left( {11} \right)^1}{\left( {10} \right)^8} + 3{\left( {11} \right)^2}{\left( {10} \right)^7} + ...... + 10{\left( {11} \right)^9} = k{\left( {10} \right)^9},$$            then $$k$$ is equal to:

A 100
B 110
C $$\frac{{121}}{{10}}$$
D $$\frac{{441}}{{100}}$$
Answer :   100