32.
The sum of the first $$n$$ terms of the series $${1^2} + {2.2^2} + {3^2} + {2.4^2} + {5^2} + {2.6^2} + ....{\text{ is }}\frac{{n{{\left( {n + 1} \right)}^2}}}{2}$$ when $$n$$ is even. When $$n$$ is odd the sum is
A
$${\left[ {\frac{{n\left( {n + 1} \right)}}{2}} \right]^2}$$
34.
If $${\log _{10}}2,{\log _{10}}\left( {{2^x} - 1} \right)$$ and $${\log _{10}}\left( {{2^x} + 3} \right)$$ are three consecutive terms of an A.P, then the value of $$x$$ is
35.
If $$a, b, c, d$$ and $$p$$ are distinct real numbers such that $$\left( {{a^2} + {b^2} + {c^2}} \right){p^2} - 2\left( {ab + bc + cd} \right)p + \left( {{b^2} + {c^2} + {d^2}} \right) \leqslant 0$$ then $$a, b, c, d$$ are in
36.
$$ABCD$$ is a square of length $$a,a \in N,a > 1.$$ Let $${L_1},{L_2},{L_3},.....$$ be points on $$BC$$ such that $$B{L_1} = {L_1}{L_2} = {L_2}{L_3} = ..... = 1$$ and $${M_1},{M_2},{M_3},.....$$ be point on $$CD$$ such that $$C{M_1} = {M_1}{M_2} = {M_2}{M_3} = ..... = 1.$$ Then $$\sum\limits_{n = 1}^{a - 1} {\left( {AL_n^2 + {L_n}M_n^2} \right)} $$ is equal to
A
$$\frac{1}{2}a{\left( {a - 1} \right)^2}$$
B
$$\frac{1}{2}a\left( {a - 1} \right)\left( {4a - 1} \right)$$
38.
If $$a, b$$ and $$c$$ are in A.P., and $$p$$ and $$p'$$ are, respectively, A.M. and G.M. between $$a$$ and $$b$$ while $$q, q'$$ are, respectively, the A,M. and G. M. between $$b$$ and $$c$$ then
A
$${p^2} + {q^2} = p{'^2} + q{'^2}$$
B
$$pq = p'q'$$
C
$${p^2} - {q^2} = p{'^2} - q{'^2}$$
D
None of these
Answer :
$${p^2} - {q^2} = p{'^2} - q{'^2}$$
$$\eqalign{
& 2b = a + c;\,\,a,p,b,q,c\,\,{\text{are in A}}{\text{.P.}} \cr
& {\text{Hence, }}p = \frac{{a + b}}{2}{\text{ and }}q = \frac{{b + c}}{2} \cr
& {\text{Again, }}a,p',b,q'{\text{ and }}c = \,{\text{are in G}}{\text{.P.}} \cr
& {\text{Hence, }}p' = \sqrt {ab} \,\,{\text{and }}q' = \sqrt {bc} \cr
& {p^2} - {q^2} = \frac{{\left( {a - c} \right)\left( {a + c + 2b} \right)}}{4} \cr
& = \frac{{\left( {a - c} \right)\left( {2b + 2b} \right)}}{4}\,\,\,\left[ {\because a + c = 2b} \right] \cr
& = \left( {a - c} \right)b = ab - bc = p{'^2} - q{'^2} \cr} $$
39.
If $$x, y, z$$ are three real numbers of the same sign then the value of $$\frac{x}{y} + \frac{y}{z} + \frac{z}{x}$$ lies in the interval