Use $${a_r} = {a_1} + \left( {r - 1} \right)d,$$ where $$d = {a_2} - {a_1}.$$
45.
The lengths of three unequal edges of a rectangular solid block are in G.P. The volume of the block is $$216\,c{m^3}$$ and the total surface area is $$252\,c{m^2}.$$ The length of the longest edge is
A
$$12\,cm$$
B
$$6\,cm$$
C
$$18\,cm$$
D
$$3\,cm$$
Answer :
$$12\,cm$$
Let the edges be $$\frac{a}{r},a,ar,$$ where $$r > 1.$$
From the question, $$\frac{a}{r} \cdot a \cdot ar = 216,\,{\text{i}}{\text{.e}}{\text{., }}{a^3} = 216,\,{\text{i}}{\text{.e}}{\text{., }}a = 6\,\,{\text{and }}2\left( {\frac{a}{r} \cdot a + a \cdot ar + \frac{a}{r} \cdot ar} \right) = 252;$$
$$\eqalign{
& \therefore \,\,\frac{1}{r} + r + 1 = \frac{7}{2} \cr
& \Rightarrow \,\,r = \frac{1}{2},2. \cr
& \therefore \,\,a = 6,r = 2;\,\,{\text{so the longest side}} = ar = 12. \cr} $$
46.
$$a, b, c$$ are three positive numbers and $$ab{c^2}$$ has the greatest value $$\frac{1}{{64}}.$$ Then
A
$$a = b = \frac{1}{2},c = \frac{1}{4}$$
B
$$a = b = \frac{1}{4},c = \frac{1}{2}$$
C
$$a = b = c = \frac{1}{3}$$
D
none of these
Answer :
$$a = b = \frac{1}{4},c = \frac{1}{2}$$
$$\eqalign{
& \frac{{a + b + \frac{c}{2} + \frac{c}{2}}}{4} \geqslant \root 4 \of {a \cdot b \cdot \frac{c}{2} \cdot \frac{c}{2}} \,\,{\text{or }}\frac{{a + b + c}}{4} \geqslant \root 4 \of {\frac{{ab{c^2}}}{4}} \cr
& \therefore \,\,\frac{{{{\left( {a + b + c} \right)}^4}}}{{{4^4}}} \geqslant \frac{{ab{c^2}}}{4};\,\,{\text{or }}ab{c^2} \leqslant \frac{1}{{64}}{\left( {a + b + c} \right)^4}. \cr} $$
∴ the greatest value of $$ab{c^2} = \frac{1}{{64}}{\left( {a + b + c} \right)^4}.$$
Also for the greatest value of $$ab{c^2}$$ the numbers have to be equal, i.e., $$a = b = \frac{c}{2}.$$
Also, given the greatest value $$ = \frac{1}{{64}}.$$ So, $$a + b + c = 1.$$
47.
The equation $$\left( {{a^2} + {b^2}} \right){x^2} - 2b\left( {a + c} \right)x + \left( {{b^2} + {c^2}} \right) = 0$$ has equal roots. Which one of the following is correct about $$a, b$$ and $$c ?$$
A
They are in A.P.
B
They are in G.P.
C
They are in H.P.
D
They are neither in A.P., nor in G.P., nor in H.P.
48.
If the coefficients of $${r^{th}},{\left( {r + 1} \right)^{th}}\,{\text{and }}{\left( {r + 2} \right)^{th}}$$ terms in the the binomial expansion of $${\left( {1 + y} \right)^{m}}$$ are in A.P., then $$m$$ and $$r$$ satisfy the equation
49.
If $$\frac{1}{a},\frac{1}{b},\frac{1}{c}$$ are A.P., then $$\left( {\frac{1}{a} + \frac{1}{b} - \frac{1}{c}} \right)\left( {\frac{1}{b} + \frac{1}{c} - \frac{1}{a}} \right)$$ is equal to
50.
If $${a_1},{a_2},.....,{a_n}$$ are positive real numbers whose product is a fixed number $$c,$$ then the minimum value of $${a_1} + {a_2} + ..... + {a_{n - 1}} + 2{a_n}\,{\text{is}}$$
A
$$n{\left( {2c} \right)^{\frac{1}{n}}}$$
B
$$\left( {n + 1} \right){ {c} ^{\frac{1}{n}}}$$
C
$${ {2nc} ^{\frac{1}{n}}}$$
D
$$\left( {n + 1} \right){\left( {2c} \right)^{\frac{1}{n}}}$$