Sets and Relations MCQ Questions & Answers in Calculus | Maths

Learn Sets and Relations MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

161. The relation ‘‘ congruence modulo $$m$$ ’’ is :

A reflexive only
B transitive only
C symmetric only
D an equivalence relation
Answer :   an equivalence relation

162. If $$A = \left\{ {4n + 2|n{\text{ is a natural number}}} \right\}$$       and $$B = \left\{ {3n|n{\text{ is a natural number}}} \right\},$$       then what is $$\left( {A \cap B} \right)$$   equal to ?

A $$\left\{ {12{n^2} + 6n|n{\text{ is a natural number}}} \right\}$$
B $$\left\{ {24n - 12|n{\text{ is a natural number}}} \right\}$$
C $$\left\{ {60n + 30|n{\text{ is a natural number}}} \right\}$$
D $$\left\{ {12n - 6|n{\text{ is a natural number}}} \right\}$$
Answer :   $$\left\{ {12n - 6|n{\text{ is a natural number}}} \right\}$$

163. The cardinality of the set $$P\left\{ {P\left[ {P\left( \phi \right)} \right]} \right\}$$   is :

A $$0$$
B $$1$$
C $$2$$
D $$4$$
Answer :   $$4$$

164. If $$f\left( x \right) + 2f\left( {\frac{1}{x}} \right) = 3x,x \ne 0$$      and $$S = \left\{ {x\,I\,R:f\left( x \right) = f\left( { - x} \right)} \right\};$$      then $$S :$$

A contains exactly two elements.
B contains more than two elements.
C is an empty set.
D contains exactly one element.
Answer :   contains exactly two elements.

165. Given $$n\left( U \right) = 20,\,n\left( A \right) = 12,\,n\left( B \right) = 9,\,n\left( {A \cap B} \right) = 4,$$           where $$U$$ is the universal set, $$A$$ and $$B$$ are subsets of $$U$$, then $$n\left( {{{\left( {A \cup B} \right)}^C}} \right) = ?$$

A 17
B 9
C 11
D 3
Answer :   3

166. If $$X = \left\{ {{4^n} - 3n - 1:n \in N} \right\}$$      and $$Y = \left\{ {9\left( {n - 1} \right):n \in N} \right\},$$     where $$N$$ is the set of natural numbers, then $$X \cup Y$$  is equal to:

A $$X$$
B $$Y$$
C $$N$$
D $$Y - X$$
Answer :   $$Y$$

167. Which of the following is true ?

A $$a\, \in \,\left\{ {\left\{ a \right\},\,b} \right\}$$
B $$\left\{ {b,\,c} \right\}\, \subset \left\{ {a,\,\left\{ {b,\,c} \right\}} \right\}$$
C $$\left\{ {a,\,b} \right\}\, \subset \left\{ {a,\,\left\{ {b,\,c} \right\}} \right\}$$
D none of these
Answer :   none of these

168. Let $$f:\left\{ {x,\,y,\,z} \right\} \to \left\{ {1,\,2,\,3} \right\}$$      be a one-one mapping such that only one of the following three statements is true and remaining two are false : $$f\left( x \right) \ne 2,\,f\left( y \right) = 2,\,f\left( z \right) \ne 1,$$       then :

A $$f\left( x \right) > f\left( y \right) > f\left( z \right)$$
B $$f\left( x \right) < f\left( y \right) < f\left( z \right)$$
C $$f\left( y \right) < f\left( x \right) < f\left( z \right)$$
D $$f\left( y \right) < f\left( z \right) < f\left( z \right)$$
Answer :   $$f\left( y \right) < f\left( x \right) < f\left( z \right)$$

169. The domain and range of the relation $$R$$ given by $$R = \left\{ {\left( {x,\,y} \right):y = x + \frac{6}{x};{\text{ where }}x,\,y\, \in \,N{\text{ and }}x < 6} \right\}$$           is :

A $$\left\{ {1,\,2,\,3} \right\},\,\left\{ {7,\,5} \right\}$$
B $$\left\{ {1,\,2} \right\},\,\left\{ {7,\,5} \right\}$$
C $$\left\{ {2,\,3} \right\},\,\left\{ {5} \right\}$$
D None of these
Answer :   $$\left\{ {1,\,2,\,3} \right\},\,\left\{ {7,\,5} \right\}$$

170. If $$g\left( x \right) = {x^2} + x - 2$$    and $$\frac{1}{2}\left( {gof} \right)\left( x \right) = 2{x^2} - 5x + 2,$$      then $$f\left( x \right)$$  is equal to :

A $$2x - 3$$
B $$2x + 3$$
C $$2{x^2} + 3x + 1$$
D $$2{x^2} - 3x - 1$$
Answer :   $$2x - 3$$