Following venn diagram shows the relation $$A - \left( {B - C} \right)$$
In the above venn diagram, horizontal lines shows $$\left( {A - B} \right)$$ and vertical lines shows $$\left( {A \cap C} \right)$$
$$\therefore \,\left( {A - B} \right) \cup \left( {A \cap C} \right) = A - \left( {B - C} \right)$$
82.
If $$F\left( n \right)$$ denotes the set of all divisors of $$n$$ except 1, what is the least value of $$y$$ satisfying $$\left[ {F\left( {20} \right) \cap F\left( {16} \right)} \right] \subseteq F\left( y \right)\,?$$
A
1
B
2
C
4
D
8
Answer :
2
Given that $$F\left( n \right) = $$ set of all divisors of $$n$$ except $$1$$
$$\eqalign{
& \therefore \,F\left( {20} \right) = \left\{ {2,\,4,\,5,\,10,\,20} \right\}{\text{ and }}F\left( {16} \right) = \left\{ {2,\,4,\,8,\,16} \right\} \cr
& \therefore \,F\left( {20} \right) \cap F\left( {16} \right) = \left\{ {2,\,4,\,5,\,10,\,20} \right\} \cap \left\{ {2,\,4,\,8} \right\} = \left\{ {2,\,4} \right\} \cr
& {\text{Also, }}\left\{ {F\left( {20} \right) \cap F\left( {16} \right)} \right\} \subseteq F\left( y \right) \cr
& {\text{So, least value of }}y = 2 \cr} $$
83.
Let $$S$$ be a set of all distinct numbers of the form $$\frac{P}{Q},$$ where $$p,\,q,\, \in \left\{ {1,\,2,\,3,\,4,\,5,\,6} \right\}.$$ What is the cardinality of the set $$S$$ ?
A
21
B
23
C
32
D
36
Answer :
36
Number of elements given $$ = 6$$
Number of elements taken at a time $$ = 2{\text{ i}}{\text{.e}}{\text{.,}}\left( {p\,\& \,q} \right)$$
$$ \Rightarrow $$ Cardinality of the set $$\left( s \right) = {6^2} = 36$$
(because numbers are repeated).
84.
Which of the following functions is (are) injective map(s) ?
A
$$f\left( x \right) = {x^2} + 2,\,x\, \in \left( { - \infty ,\,\infty } \right)$$
B
$$f\left( x \right) = \left| {x + 2} \right|,\,x\, \in \left[ { - 2,\,\infty } \right)$$
The function $$f\left( x \right) = {x^2} + 2,\,x\, \in \,\left( { - \infty ,\,\infty } \right)$$ is not injective as $$f\left( 1 \right) = f\left( { - 1} \right){\text{ but }}1 \ne - 1.$$
The function $$f\left( x \right) = \left( {x - 4} \right)\left( {x - 5} \right),\,x\, \in \left( { - \infty ,\,\infty } \right)$$ is not one-one as $$f\left( 4 \right) = f\left( 5 \right),{\text{ but}}\,4 \ne 5.$$
The function, $$f\left( x \right) = \frac{{4{x^2} + 3x - 5}}{{4 + 3x - 5{x^2}}},\,x\, \in \left( { - \infty ,\,\infty } \right)$$ is also not injective as $$f\left( 1 \right) = f\left( { - 1} \right),{\text{ but }}1 \ne - 1$$
For the function, $$f\left( x \right) = \left| {x + 2} \right|,\,x\, \in \left[ { - 2,\,\infty } \right)$$
$$\eqalign{
& {\text{Let }}f\left( x \right) = f\left( y \right),\,x,\,y\, \in \left[ { - 2,\,\infty } \right) \cr
& \Rightarrow \left| {x + 2} \right| = \left| {y + 2} \right| \cr
& \Rightarrow x + 2 = y + 2 \cr
& \Rightarrow x = y \cr} $$
So, $$f$$ is an injective.
85.
Two finite sets have $$m$$ and $$n$$ elements. The total number of subsets of the first set is $$56$$ more than the total number of subsets of the second set. Then :
If any of the inequations hold, it must hold for any real numbers $${x_1},{x_2},.....,{x_n}\,$$ and any $$n \in N.$$
∴ let $${x_1} = 1,{x_2} = 2,{x_3} = 3;n = 3$$ then we can check none of the inequalities (A), (B) or (C) are satisfied.
87.
If $$f:R \to R,\,g:R \to R$$ and $$h:R \to R$$ are such that $$f\left( x \right) = {x^2},\,g\left( x \right) = \tan \,x$$ and $$h\left( x \right) = \log \,x,$$ then the value of $$\left( {ho\left( {gof} \right)} \right)\left( x \right)$$ if $$x = \sqrt {\frac{\pi }{4}} $$ will be :
89.
Which one of the following is correct ?
Here $$P\left( A \right)$$ denotes the power set of a set $$A$$
A
$$A \cup P\left( A \right) = P\left( A \right)$$
B
$$A \cap P\left( A \right) = A$$
C
$$A - P\left( A \right) = A$$
D
$$P\left( A \right) - \left\{ A \right\} = P\left( A \right)$$
Answer :
$$A \cup P\left( A \right) = P\left( A \right)$$
$$A \cup P\left( A \right) = P\left( A \right)$$ is correct.
Since $$A$$ is a subset of its power set.
90.
Let $$n$$ be a fixed positive integer. Define a relation $$R$$ in the set $$Z$$ of integer by $$aRb$$ if and only if $$\frac{n}{{a - b}}.$$ The relation $$R$$ is :