Sets and Relations MCQ Questions & Answers in Calculus | Maths

Learn Sets and Relations MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

81. If $$A,\,B,\,C$$  are three sets, then what is $$A - \left( {B - C} \right)$$   equal to ?

A $$A - \left( {B \cap C} \right)$$
B $$\left( {A - B} \right) \cup C$$
C $$\left( {A - B} \right) \cup \left( {A \cap C} \right)$$
D $$\left( {A - B} \right) \cup \left( {A - C} \right)$$
Answer :   $$\left( {A - B} \right) \cup \left( {A \cap C} \right)$$

82. If $$F\left( n \right)$$  denotes the set of all divisors of $$n$$ except 1, what is the least value of $$y$$ satisfying $$\left[ {F\left( {20} \right) \cap F\left( {16} \right)} \right] \subseteq F\left( y \right)\,?$$

A 1
B 2
C 4
D 8
Answer :   2

83. Let $$S$$ be a set of all distinct numbers of the form $$\frac{P}{Q},$$  where $$p,\,q,\, \in \left\{ {1,\,2,\,3,\,4,\,5,\,6} \right\}.$$      What is the cardinality of the set $$S$$ ?

A 21
B 23
C 32
D 36
Answer :   36

84. Which of the following functions is (are) injective map(s) ?

A $$f\left( x \right) = {x^2} + 2,\,x\, \in \left( { - \infty ,\,\infty } \right)$$
B $$f\left( x \right) = \left| {x + 2} \right|,\,x\, \in \left[ { - 2,\,\infty } \right)$$
C $$f\left( x \right) = \left( {x - 4} \right)\left( {x - 5} \right),\,x\, \in \left( { - \infty ,\,\infty } \right)$$
D $$f\left( x \right) = \frac{{4{x^2} + 3x - 5}}{{4 + 3x - 5{x^2}}},\,x\, \in \left( { - \infty ,\,\infty } \right)$$
Answer :   $$f\left( x \right) = \left| {x + 2} \right|,\,x\, \in \left[ { - 2,\,\infty } \right)$$

85. Two finite sets have $$m$$ and $$n$$ elements. The total number of subsets of the first set is $$56$$  more than the total number of subsets of the second set. Then :

A $$m = 3,\,n = 6$$
B $$m = 6,\,n = 3$$
C $$m = 5,\,n = 6$$
D none of these
Answer :   $$m = 6,\,n = 3$$

86. If $${x_1},{x_2},.....,{x_n}$$    are any real numbers and $$n$$ is any positive integer, then

A $$n\sum\limits_{i = 1}^n {{x_i}^2 < {{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
B $$\sum\limits_{i = 1}^n {{x_i}^2 \geqslant {{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
C $$\sum\limits_{i = 1}^n {{x_i}^2 \geqslant n{{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
D none of these
Answer :   none of these

87. If $$f:R \to R,\,g:R \to R$$     and $$h:R \to R$$   are such that $$f\left( x \right) = {x^2},\,g\left( x \right) = \tan \,x$$     and $$h\left( x \right) = \log \,x,$$   then the value of $$\left( {ho\left( {gof} \right)} \right)\left( x \right)$$   if $$x = \sqrt {\frac{\pi }{4}} $$  will be :

A $$0$$
B $$1$$
C $$ - 1$$
D $$\pi $$
Answer :   $$0$$

88. Let $$S = \left\{ {x \in R:x \geqslant 0} \right.$$     and $$2\left| {\sqrt x - 3} \right| + \sqrt x \left( {\sqrt x - 6} \right) + 6 = 0.$$       Then $$S$$:

A contains exactly one element.
B contains exactly two element.
C contains exactly four element.
D is an empty set.
Answer :   contains exactly two element.

89. Which one of the following is correct ?
Here $$P\left( A \right)$$  denotes the power set of a set $$A$$

A $$A \cup P\left( A \right) = P\left( A \right)$$
B $$A \cap P\left( A \right) = A$$
C $$A - P\left( A \right) = A$$
D $$P\left( A \right) - \left\{ A \right\} = P\left( A \right)$$
Answer :   $$A \cup P\left( A \right) = P\left( A \right)$$

90. Let $$n$$ be a fixed positive integer. Define a relation $$R$$ in the set $$Z$$ of integer by $$aRb$$  if and only if $$\frac{n}{{a - b}}.$$  The relation $$R$$ is :

A reflexive
B symmetric
C transitive
D an equivalence relation.
Answer :   an equivalence relation.