Ellipse MCQ Questions & Answers in Geometry | Maths
Learn Ellipse MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.
41.
Which of the following points is an exterior point of the ellipse $$16{x^2} + 9{y^2} - 16x - 32 = 0?$$
A
$$\left( {\frac{1}{2},\,2} \right)$$
B
$$\left( {\frac{1}{4},\,1} \right)$$
C
$$\left( {3,\, - 2} \right)$$
D
none of these
Answer :
$$\left( {3,\, - 2} \right)$$
$$\left( {\alpha ,\,\beta } \right)$$ is an exterior point if $$16{\alpha ^2} + 9{\beta ^2} - 16\alpha - 32 > 0.$$
42.
The normal at a point $$P$$ on the ellipse $${x^2} + 4{y^2} = 16$$ meets the $$x$$-axis at $$Q.$$ If $$M$$ is the mid point of the line segment $$PQ,$$ then the locus of $$M$$ intersects the latus rectums of the given ellipse at the points-
A
$$\left( { \pm \frac{{3\sqrt 5 }}{2},\, \pm \frac{2}{7}} \right)$$
The given ellipse is $$\frac{{{x^2}}}{{{4^2}}} + \frac{{{y^2}}}{{{2^2}}} = 1$$
such that $${a^2} = 16$$ and $${b^2} = 4$$
$$\therefore {e^2} = 1 - \frac{4}{{16}} = \frac{3}{4}\,\, \Rightarrow e = \frac{{\sqrt 3 }}{2}$$
Let $$P\left( {4\,\cos \,\theta ,\,2\,\sin \,\theta } \right)$$ be any point on the ellipse, then equation of normal at $$P$$ is
$$\eqalign{
& 4x\,\sin \,\theta - 2y\,\cos \,\theta = 12\,\sin \,\theta \,\cos \,\theta \cr
& \Rightarrow \frac{x}{{3\,\cos \,\theta }} - \frac{y}{{6\,\sin \,\theta }} = 1 \cr} $$
$$\therefore \,\,Q,$$ the point where normal at $$P$$ meets x-axis, has coordinates $$\left( {3\,\cos \,\theta ,\,0} \right)$$
$$\therefore $$ Mid point of $$PQ$$ is $$M\left( {\frac{{7\,\cos \,\theta }}{2},\,\sin \,\theta } \right)$$
For locus of point $$M$$ we consider
$$\eqalign{
& x = \frac{{7\,\cos \,\theta }}{2}{\text{ and }}y = \sin \,\theta \cr
& \Rightarrow \cos \,\theta = \frac{{2x}}{7}{\text{ and }}\sin \,\theta = y \cr
& \Rightarrow \frac{{4{x^2}}}{{49}} + {y^2} = 1.....(1) \cr} $$
Also the latus rectum of given ellipse is
$$\eqalign{
& x = \pm ae = \pm 4 \times \frac{{\sqrt 3 }}{2} = \pm 2\sqrt 3 \cr
& {\text{or }}\,\,x = \pm 2\sqrt 3 .....(2) \cr} $$
Solving equations (1) and (2), we get
$$\eqalign{
& \frac{{4 \times 12}}{{49}} + {y^2} = 1 \cr
& \Rightarrow {y^2} = \frac{1}{{49}}{\text{ or }}y = \pm \frac{1}{7} \cr} $$
$$\therefore $$ The required points are $$\left( { \pm 2\sqrt 3 ,\, \pm \frac{1}{7}} \right)$$
43.
If the eccentricity of the hyperbola $${x^2} - {y^2}{\sec ^2}\theta = 4$$ is $$\sqrt 3 $$ times the eccentricity of the ellipse $${x^2}{\sec ^2}\theta + {y^2} = 16,$$ then the value of $$\theta $$ equals :
44.
If a point $$P\left( {x,\,y} \right)$$ moves along the ellipse $$\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{{16}} = 1$$ and if $$C$$ is the centre of the ellipse, then, $$4\,\max \left\{ {CP} \right\} + 5\,\min \left\{ {CP} \right\} = \,?$$
A
$$25$$
B
$$40$$
C
$$45$$
D
$$54$$
Answer :
$$40$$
Given equation of ellipse is $$\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{{16}} = 1$$
$$ \Rightarrow a = 5{\text{ and }}b = 4$$
Since $$p\left( {x,\,y} \right)$$ moves along ellipse and $$C$$ is the center
$$\eqalign{
& \therefore \,\max \left( {CP} \right) = 5{\text{ and }}\min \left( {CP} \right) = 4 \cr
& \therefore 4\,\max \left\{ {cp} \right\} + 5\,\min \left\{ {cp} \right\} = 4 \times 5 + 5 \times 4 = 40 \cr} $$
45.
If the focal distance of an end of the minor axis of any ellipse (referred to its axis as the axes of $$x$$ and $$y$$ respectively) is $$k$$ and the distance between the foci is $$2h,$$ then its equation is :
A
$$\frac{{{x^2}}}{{{k^2}}} + \frac{{{y^2}}}{{{k^2} + {h^2}}} = 1$$
B
$$\frac{{{x^2}}}{{{k^2}}} + \frac{{{y^2}}}{{{h^2} - {k^2}}} = 1$$
C
$$\frac{{{x^2}}}{{{k^2}}} + \frac{{{y^2}}}{{{k^2} - {h^2}}} = 1$$
D
$$\frac{{{x^2}}}{{{k^2}}} + \frac{{{y^2}}}{{{h^2}}} = 1$$
Let the equation of the ellipse be $$\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$$
Let $$e$$ be the eccentricity of the ellipse.
Since distance between foci $$ = 2h$$
$$\therefore \,2ae = 2h \Rightarrow e = h......\left( 1 \right)$$
Focal distance of one end of minor axis say $$\left( {0,\,b} \right)$$ is $$k$$
$$\therefore \,a + e\left( 0 \right) = k \Rightarrow a = k......\left( 2 \right)$$
From $$\left( 1 \right)$$ and $$\left( 2 \right),\,\,{b^2} = {a^2}\left( {1 - {e^2}} \right) = {k^2} - {h^2}$$
$$\therefore $$ The equation of the ellipse is $$\frac{{{x^2}}}{{{k^2}}} + \frac{{{y^2}}}{{{k^2} - {h^2}}} = 1.$$
46.
The radius of the circle passing through the foci of the ellipse $$\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{9} = 1,$$ and having its centre at $$\left( {0,\,3} \right)$$ is-
A
$$4$$
B
$$3$$
C
$$\sqrt {\frac{1}{2}} $$
D
$$\frac{7}{2}$$
Answer :
$$4$$
For ellipse $$\frac{{{x^2}}}{{{4^2}}} + \frac{{{y^2}}}{{{3^2}}} = 1,\,\,a = 4,\,\,b = 3$$
$$ \Rightarrow e = \sqrt {1 - {{\left( {\frac{3}{4}} \right)}^2}} = \frac{{\sqrt 7 }}{4}$$
$$\therefore $$ Foci are $$\left( {\sqrt 7 ,0} \right)$$ and $$\left( { - \sqrt 7 ,0} \right)$$
Centre of circle is at (0, 3) and it passes through $$\left( { + \sqrt 7 ,0} \right),$$
therefore radius of circle $$ = \sqrt {{{\left( {\sqrt 7 } \right)}^2} + {{\left( 3 \right)}^2}} = 4$$
47.
The area (in square units) of the quadrilateral formed by the tangents at the end points of the latera recta to the ellipse $$\frac{{{x^2}}}{9} + \frac{{{y^2}}}{5} = 1,$$ is :
A
$$\frac{27}{2}$$
B
$$27$$
C
$$\frac{27}{4}$$
D
$$18$$
Answer :
$$27$$
The end point of latus rectum of ellipse $$\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$$ in first quadrant is $$\left( {ae,\,\frac{{{b^2}}}{a}} \right)$$ and the tangent at this point intersects $$x$$-axis at $$\left( {\frac{a}{e},\,0} \right)$$ and $$y$$-axis at $$\left( {0,\,a} \right)$$
The given ellipse is $$\frac{{{x^2}}}{9} + \frac{{{y^2}}}{5} = 1$$
Then $${a^2} = 9,\,\,\,\,{b^2} = 5\,\,\,\,\,\, \Rightarrow e = \sqrt {1 - \frac{5}{9}} = \frac{2}{3}$$
$$\therefore $$ end point of latus rectum in first quadrant is $$L\left( {2,\,\frac{5}{3}} \right)$$
Equation of tangent at $$L$$ is $$\frac{{2x}}{9} + \frac{y}{3} = 1$$
It meets $$x$$-axis at $$A\left( {\frac{9}{2},\,0} \right)$$ and $$y$$-axis at $$B\left( {0,\,3} \right)$$
$$\therefore $$ Area of $$\Delta OAB = \frac{1}{2} \times \frac{9}{2} \times 3 = \frac{{27}}{4}$$
By symmetry area of quadrilateral
$$ = 4 \times \left( {{\text{Area of }}\Delta OAB} \right) = 4 \times \frac{{27}}{4} = 27{\text{ sq}}{\text{. units}}$$
48.
Let $$d$$ be the perpendicular distance from the centre of the ellipse $$\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$$ to the tangent drawn at a point $$P$$ on the ellipse. If $${F_1}$$ and $${F_2}$$ be the foci of the ellipse, then $${\left( {P{F_1} - P{F_2}} \right)^2} = ?$$
A
$$4{a^2}\left( {1 - \frac{{{b^2}}}{{{d^2}}}} \right)$$
B
$${a^2}\left( {1 - \frac{{{b^2}}}{{{d^2}}}} \right)$$
C
$$4{b^2}\left( {1 - \frac{{{a^2}}}{{{d^2}}}} \right)$$
D
$${b^2}\left( {1 - \frac{{{a^2}}}{{{d^2}}}} \right)$$
Let the point $$P$$ be $$\left( {a\,\cos \,\theta ,\,b\,\sin \,\theta } \right)$$
The equation of tangent at $$P$$ is
$$\frac{{x\,\cos \,\theta }}{a} + \frac{{y\,\sin \,\theta }}{b} = 1......\left( 1 \right)$$
If $$d$$ be the length of perpendicular from the centre $$C\left( {0,\,0} \right)$$ of the ellipse to the tangent given by $$\left( 1 \right)$$ then
$$\eqalign{
& d = \frac{1}{{\sqrt {\frac{{{{\cos }^2}\theta }}{{{a^2}}} + \frac{{{{\sin }^2}\theta }}{{{b^2}}}} }} \cr
& \Rightarrow \frac{1}{{{d^2}}} = \frac{{{{\cos }^2}\theta }}{{{a^2}}} + \frac{{{{\sin }^2}\theta }}{{{b^2}}} \cr
& \Rightarrow \frac{{{b^2}}}{{{d^2}}} = \frac{{{b^2}}}{{{a^2}}}{\cos ^2}\theta + 1 - {\cos ^2}\theta \cr
& \Rightarrow 1 - \frac{{{b^2}}}{{{d^2}}} = \left( {1 - \frac{{{b^2}}}{{{a^2}}}} \right){\cos ^2}\theta \cr
& \Rightarrow 1 - \frac{{{b^2}}}{{{d^2}}} = {e^2}{\cos ^2}\theta ......\left( 2 \right) \cr
& {\text{Now,}}\,\,{\left( {P{F_1} - P{F_2}} \right)^2} \cr
& = {\left( {2ae\,\cos \,\theta } \right)^2} \cr
& = 4{a^2}{e^2}{\cos ^2}\theta \cr
& = 4{a^2}\left( {1 - \frac{{{b^2}}}{{{d^2}}}} \right) \cr} $$
49.
An ellipse having foci at $$\left( {3,\,1} \right)$$ and $$\left( {1,\,1} \right)$$ passes through the point $$\left( {1,\,3} \right).$$ Its
eccentricity is :