Straight Lines MCQ Questions & Answers in Geometry | Maths
Learn Straight Lines MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.
181.
The limiting position of the point of intersection of the lines $$3x+4y=1$$ and $$\left( {1 + c} \right)x + 3{c^2}y = 2$$ as $$c$$ tends to 1 is :
182.
The parametric equation of a line is given by $$x = - 2 + \frac{r}{{\sqrt {10} }}$$ and $$y = 1 + 3\frac{r}{{\sqrt {10} }}.$$ Then, for the line :
A
intercept on the $$x$$-axis $$ = \frac{7}{3}$$
B
intercept on the $$y$$-axis $$ = - 7$$
C
slope of the line $$ = {\tan ^{ - 1}}\frac{1}{3}$$
D
slope of the line $$ = {\tan ^{ - 1}}3$$
Answer :
slope of the line $$ = {\tan ^{ - 1}}3$$
The cartesian equation is $$x + 2 = \frac{{y - 1}}{3},\,{\text{i}}{\text{.e}}{\text{.}},\,3x - y + 7 = 0.$$
183.
Let $$0 < \alpha < \frac{\pi }{2}$$ be a fixed angle. If $$P\left( {\cos \,\theta ,\,\sin \,\theta } \right)$$ and $$Q\left( {\cos \left( {\alpha - \theta } \right),\,\sin \left( {\alpha - \theta } \right)} \right),$$ then $$Q$$ is obtained from $$P$$ by the :
A
clockwise rotation around the origin through an angle $$\alpha $$
B
anticlockwise rotation around the origin through an angle $$\alpha $$
C
reflection in the line through the origin with slope $$\tan \,\alpha $$
D
reflection in the line through the origin with slope $$\tan \left( {\frac{\alpha }{2}} \right)$$
Answer :
reflection in the line through the origin with slope $$\tan \left( {\frac{\alpha }{2}} \right)$$
Clearly, $$OP = OQ = 1$$ and $$\angle QOP = \alpha - \theta - \theta = \alpha - 2\theta $$
The bisector of $$\angle QOP$$ will be perpendicular to $$PQ$$ and also bisect it. Hence, $$Q$$ is the reflection of $$P$$ in the line $$OM$$ which makes an angle equal to $$\angle MOP + \angle POX$$ with the $$x$$-axis, i.e., $$\frac{1}{2}\left( {\alpha - 2\theta } \right) + \theta = \frac{\alpha }{2}$$
So that slope of $$OM$$ is $$\tan \left( {\frac{\alpha }{2}} \right).$$
184.
The equation of straight line passing through $$\left( { - a,\,0} \right)$$ and making a triangle with the axes of area $$T$$ is :
A
$$2Tx + {a^2}y + 2aT = 0$$
B
$$2Tx - {a^2}y + 2aT = 0$$
C
$$2Tx - {a^2}y - 2aT = 0$$
D
None of these
Answer :
$$2Tx - {a^2}y + 2aT = 0$$
If the line cuts off the axes at $$A$$ and $$B,$$ then the area of triangle is
$$\eqalign{
& \frac{1}{2} \times OA \times OB = T \cr
& {\text{or }}\frac{1}{2} \times a \times OB = T \cr
& {\text{or }}OB = \frac{{2T}}{a} \cr} $$
Hence, the equation of line is $$\frac{x}{{ - a}} + \frac{y}{{\frac{{2T}}{a}}} = 1\,\,{\text{or }}2Tx - {a^2}y + 2aT = 0$$
185.
What is the acute angle between the lines represented by the equations $$y - \sqrt 3 x - 5 = 0$$ and $$\sqrt 3 y - x + 6 = 0\,?$$
A
$${30^ \circ }$$
B
$${45^ \circ }$$
C
$${60^ \circ }$$
D
$${75^ \circ }$$
Answer :
$${30^ \circ }$$
$$\eqalign{
& y - \sqrt 3 x - 5 = 0{\text{ line one}} \cr
& \sqrt 3 y - x + 6 = 0{\text{ line two}} \cr
& y = mx + c \cr
& y = \sqrt 3 x + 5 \cr
& y = \frac{x}{{\sqrt 3 }} - \frac{6}{{\sqrt 3 }} \cr
& {m_1} = \sqrt 3 \cr
& {m_2} = \frac{1}{{\sqrt 3 }} \cr} $$
Angle between two lines,
$$\eqalign{
& \tan \,\theta = \left| {\frac{{{m_1} - {m_2}}}{{1 + {m_1}{m_2}}}} \right| = \left| {\frac{{\sqrt 3 - \frac{1}{{\sqrt 3 }}}}{{1 + \sqrt 3 \frac{1}{{\sqrt 3 }}}}} \right| = \frac{1}{{\sqrt 3 }} = \tan \,{30^ \circ } \cr
& \therefore \,\theta = {30^ \circ } \cr} $$
186.
The graph of the function $$\cos \,x.\cos \left( {x + 2} \right) - {\cos ^2}\left( {x + 1} \right)\,$$ is a :
A
straight line passing through the point $$\left( {0,\, - {{\sin }^2}1} \right)$$ with slope 2
B
straight line passing through the origin
C
parabola with vertex $$\left( {1,\, - {{\sin }^2}1} \right)$$
D
straight line passing through the point $$\left( {\frac{\pi }{2},{\mkern 1mu} - {{\sin }^2}1} \right)$$ and parallel to the $$x$$-axis
Answer :
straight line passing through the point $$\left( {\frac{\pi }{2},{\mkern 1mu} - {{\sin }^2}1} \right)$$ and parallel to the $$x$$-axis
The equation of the graph is $$y = \cos \,x.\cos \left( {x + 2} \right) - {\cos ^2}\left( {x + 1} \right)$$
$$\eqalign{
& {\text{or, }}y = \frac{1}{2}\left\{ {\cos \,2 + \cos \,2\left( {x + 1} \right)} \right\} - \frac{1}{2}\left\{ {1 + \cos \,2\left( {x + 1} \right)} \right\} \cr
& = \frac{1}{2}\left( {\cos \,2 - 1} \right) \cr
& = - \frac{1}{2}.2{\sin ^2}1 \cr
& = - {\sin ^2}1 \cr} $$
The graph is parallel to the $$x$$-axis, and $$\left( {\frac{\pi }{2},{\mkern 1mu} - {{\sin }^2}1} \right)$$ satisfies it.
187.
Let $$P = \,\left( { - 1,\,0} \right),\,Q = \left( {0,\,0} \right)$$ and $$R = \left( {3,\,3\sqrt 3 } \right)$$ be three point. The equation of the bisector of the angle $$PQR$$ is-
A
$$\frac{{\sqrt 3 }}{2}x + y = 0$$
B
$$x + \sqrt {3y} = 0$$
C
$$\sqrt 3 x + y = 0$$
D
$$x + \frac{{\sqrt 3 }}{2}y = 0$$
Answer :
$$\sqrt 3 x + y = 0$$
Given : The coordinates of points $$P, \,Q, \,R$$ are $$\left( { - 1,\,0} \right),\,\left( {0,\,0} \right),\,\left( {3,\,3\sqrt 3 } \right)$$ respectively.
$$\eqalign{
& {\text{Slope of }}QR = \frac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}} = \frac{{3\sqrt 3 }}{3} \cr
& \Rightarrow \tan \,\theta = \sqrt 3 \cr
& \Rightarrow \theta = \frac{\pi }{3} \cr
& \Rightarrow \angle RQX = \frac{\pi }{3} \cr
& \therefore \angle RQP = \pi - \frac{\pi }{3} = \frac{{2\pi }}{3} \cr} $$
Let $$QM$$ bisects the $$\angle PQR,$$
$$\therefore $$ Slope of the line $$QM = \tan \frac{{2\pi }}{3} = - \sqrt 3 $$
$$\therefore $$ Equation of line $$QM$$ is $$\left( {y - 0} \right) = - \sqrt 3 \left( {x - 0} \right)$$
$$\eqalign{
& \Rightarrow y = - \sqrt 3 x\,\, \cr
& \Rightarrow \sqrt 3 \,x + y = 0 \cr} $$