Straight Lines MCQ Questions & Answers in Geometry | Maths

Learn Straight Lines MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.

21. The range of value of $$\alpha $$ such that $$\left( {0,\,\alpha } \right)$$  lies on or inside the triangle formed by the lines $$y + 3x + 2 = 0,\,3y - 2x - 5 = 0,\,4y + x - 14 = 0\,{\text{is :}}$$

A $${\text{5 < }}\alpha \leqslant 7$$
B $$\frac{1}{2} \leqslant \alpha \leqslant 1$$
C $$\frac{5}{3} \leqslant \alpha \leqslant \frac{7}{2}$$
D None of these
Answer :   $$\frac{5}{3} \leqslant \alpha \leqslant \frac{7}{2}$$

22. If $$\left( {a,\,{a^2}} \right)$$  falls inside the angle made by the lines $$y = \frac{x}{2},\,x > 0$$    and $$y = 3x,\,x > 0$$    then $$a$$ belong to-

A $$\left( {0,\,\frac{1}{2}} \right)$$
B $$\left( {3,\,\infty } \right)$$
C $$\left( {\frac{1}{2},\,3} \right)$$
D $$\left( { - 3,\, - \frac{1}{2}} \right)$$
Answer :   $$\left( {\frac{1}{2},\,3} \right)$$

23. The equation of the bisector of the acute angle between the lines $$2x-y+4=0$$    and $$x-2y=1$$   is :

A $$x+y+5=0$$
B $$x-y+1=0$$
C $$x-y=5$$
D none of these
Answer :   $$x-y+1=0$$

24. If $$\left( { - 4,\,5} \right)$$  is one vertex and $$7x - y + 8 = 0$$    is one diagonal of a square, then the equation of second diagonal is :

A $$x + 3y = 21$$
B $$2x - 3y = 7$$
C $$x + 7y = 31$$
D $$2x + 3y = 21$$
Answer :   $$x + 7y = 31$$

25. If the point $$P\left( {x,\,y} \right)$$  is equidistant from the points $$A\left( {a + b,\,b - a} \right)$$    and $$B\left( {a - b,\,a + b} \right)$$    then :

A $$ax = by$$
B $$bx = ay{\text{ and }}P{\text{ can be }}\left( {a,\,b} \right)$$
C $${x^2} - {y^2} = 2\left( {ax + by} \right)$$
D None of the above
Answer :   $$bx = ay{\text{ and }}P{\text{ can be }}\left( {a,\,b} \right)$$

26. The centroid of the triangle whose three sides are given by the combined equation $$\left( {{x^2} + 7xy + 2{y^2}} \right)\left( {y - 1} \right) = 0$$       is :

A $$\left( {\frac{2}{3},\,0} \right)$$
B $$\left( {\frac{7}{3},\,\frac{2}{3}} \right)$$
C $$\left( { - \frac{7}{3},\,\frac{2}{3}} \right)$$
D none of these
Answer :   $$\left( { - \frac{7}{3},\,\frac{2}{3}} \right)$$

27. The orthocenter of the triangle formed by the lines $$xy = 0$$   and $$x+y=1$$   is-

A $$\left( {\frac{1}{2},\,\frac{1}{2}} \right)$$
B $$\left( {\frac{1}{3},\,\frac{1}{3}} \right)$$
C $$\left( {0,\,0} \right)$$
D $$\left( {\frac{1}{4},\,\frac{1}{4}} \right)$$
Answer :   $$\left( {0,\,0} \right)$$

28. The points $$\left( {\alpha ,\,\beta ,} \right),\,\left( {\gamma ,\,\delta } \right),\,\left( {\alpha ,\,\delta } \right)$$     and $$\left( {\gamma ,\,\beta } \right)$$  taken in order, where $$\alpha ,\,\beta ,\,\gamma ,\,\delta $$   are different real numbers, are :

A collinear
B vertices of a square
C vertices of a rhombus
D concyclic
Answer :   concyclic

29. If the point $$\left( {\cos \,\theta ,\,\sin \,\theta } \right)$$   does not fall in that angle between the lines $$y = \left| {x - 1} \right|$$   in which the origin lies then $$\theta $$ belongs to :

A $$\left( {\frac{\pi }{2},\,\frac{{3\pi }}{2}} \right)$$
B $$\left( { - \frac{\pi }{2},\,\frac{\pi }{2}} \right)$$
C $$\left( {0,\,\pi } \right)$$
D none of these
Answer :   $$\left( { - \frac{\pi }{2},\,\frac{\pi }{2}} \right)$$

30. The circumradius of the triangle formed by the three lines $$y + 3x - 5 = 0 ;\,y = x$$     and $$3y - x + 10 = 0$$    is :

A $$\frac{{25}}{{4\sqrt 2 }}$$
B $$\frac{{25}}{{3\sqrt 2 }}$$
C $$\frac{{25}}{{2\sqrt 2 }}$$
D $$\frac{{25}}{{\sqrt 2 }}$$
Answer :   $$\frac{{25}}{{4\sqrt 2 }}$$