Straight Lines MCQ Questions & Answers in Geometry | Maths
Learn Straight Lines MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.
61.
A rectangle $$ABCD,$$ where $$A\left( {0,\,0} \right),\,B\left( {4,\,0} \right),\,C\left( {4,\,2} \right),\,D\left( {0,\,2} \right),$$ undergoes the following transformations successively :
$$\eqalign{
& {\text{i}}{\text{.}}\,{f_1}\left( {x,\,y} \right) \to \left( {y,\,x} \right) \cr
& {\text{ii}}{\text{.}}\,{f_2}\left( {x,\,y} \right) \to \left( {x + 3y,\,y} \right) \cr
& {\text{iii}}{\text{.}}\,{f_3}\left( {x,\,y} \right) \to \left( {\frac{{\left( {x - y} \right)}}{2},\frac{{\left( {x + y} \right)}}{2}} \right) \cr} $$
The final figure will be :
A
a square
B
a rhombus
C
a rectangle
D
a parallelogram
Answer :
a parallelogram
Clearly, $$A$$ will remain as $$\left( {0,\,0} \right),{f_1}$$ will make $$B$$ as $$\left( {0,\,4} \right),{f_2}$$ will make it $$\left( {12,\,4} \right),$$ and $${f_3}$$ will make it $$\left( {4,\,8} \right),{f_1}$$ will make $$C$$ as $$\left( {2,\,4} \right),{f_2}$$ will make it $$\left( {14,\,4} \right),$$ and $${f_3}$$ will make it $$\left( {5,\,9} \right).$$
Finally, $${f_1}$$ will make $$D$$ as $$\left( {2,\,0} \right),{f_2}$$ will make it $$\left( {2,\,0} \right),$$ and $${f_3}$$ will make it $$\left( {1,\,1} \right).$$
So, we finally get $$A\left( {0,\,0} \right),\,B\left( {4,\,8} \right),\,C\left( {5,\,9} \right){\text{ and }}D\left( {1,\,1} \right).$$
Hence,
$$\eqalign{
& {m_{AB}} = \frac{8}{4},\,{m_{BC}} = \frac{{9 - 8}}{{5 - 4}} = 1,\,{m_{CD}} = \frac{{9 - 1}}{{5 - 1}} = \frac{8}{4}, \cr
& {m_{AD}} = 1,\,{m_{AC}} = \frac{9}{5},\,{m_{BD}} = \frac{{8 - 1}}{{4 - 1}} = \frac{7}{3} \cr} $$
Hence, the final figure will be a parallelogram.
62.
If a ray travelling along the line $$x=1$$ gets reflected from the line $$x+y=1$$ then the equation of the line along which the reflected ray travels is :
A
$$y=0$$
B
$$x-y=1$$
C
$$x=0$$
D
none of these
Answer :
$$y=0$$
Clearly from the figure, the reflected ray moves along the $$x$$-axis.
63.
A triangle with vertices $$\left( {4,\,0} \right),\,\left( { - 1,\, - 1} \right),\,\left( {3,\,5} \right)$$ is-
A
isosceles and right angled
B
isosceles but not right angled
C
right angled but not isosceles
D
neither right angled nor isosceles
Answer :
isosceles and right angled
$$\eqalign{
& AB = \sqrt {{{\left( {4 + \,1} \right)}^2} + \,{{\left( {0 + 1} \right)}^2}} = \sqrt {26} \cr
& BC = \sqrt {{{\left( {3 + \,1} \right)}^2} + \,{{\left( {5 + 1} \right)}^2}} = \sqrt {52} \cr
& CA = \sqrt {{{\left( {4 - 3} \right)}^2} + \,{{\left( {0 - 5} \right)}^2}} = \sqrt {26} \cr} $$
In isosceles triangle side $$AB = CA$$
For right angled triangle, $$B{C^2} = A{B^2} + A{C^2}$$
So, here $$\eqalign{
& BC = \sqrt {52} \, \cr
& {\text{or}}\,{\text{ }}B{C^2} = 52 \cr
& {\text{or}}\,{\text{ }}{\left( {\sqrt {26} } \right)^2} + {\left( {\sqrt {26} } \right)^2} = 52 \cr} $$
So, the given triangle is right angled and also isosceles .
64.
A straight line $$L$$ with negative slope passes through the point $$\left( {8,\,2} \right)$$ and cuts the positive coordinate axes at points $$P$$ and $$Q.$$ As $$L$$ varies the absolute minimum value of $$OP + OQ$$ is ($$O$$ is
origin)
A
28
B
15
C
18
D
10
Answer :
18
Let the equation of the line $$L$$ be $$y - 2 = m\left( {x - 8} \right),\,m < 0$$
Coordinates of $$P$$ and $$Q$$ are $$P\left( {8 - \frac{2}{m},\,0} \right)$$ and $$Q\left( {0,\,2 - 8m} \right)$$
$$\eqalign{
& {\text{So, }}OP + OQ = 8 - \frac{2}{m} + 2 - 8m = 10 + \frac{2}{{ - m}} + 8\left( { - m} \right) \cr
& \geqslant 10 + 2\sqrt {\frac{2}{{ - m}} + 8\left( { - m} \right)} \geqslant 18 \cr} $$
absolute min. value of $$OP + OQ = 18.$$
65.
Let $$P = \left( { - 1,\,0} \right),\,Q = \left( {0,\,0} \right)$$ and $$R = \left( {3,\,3\sqrt 3 } \right)$$ be three points. Then the equation of the bisector of the angle $$PQR$$ is-
A
$$\frac{{\sqrt 3 }}{2}x + y = 0$$
B
$$x + \sqrt 3 y = 0$$
C
$$\sqrt 3 x + y = 0$$
D
$$x + \frac{{\sqrt 3 }}{2}y = 0$$
Answer :
$$\sqrt 3 x + y = 0$$
$$\eqalign{
& \tan \,\theta = \sqrt 3 \, \Rightarrow \theta = {60^ \circ }\,\, \Rightarrow \angle PQR = {120^ \circ } \cr
& \Rightarrow {\text{bisector will have slope tan }}{120^ \circ } \cr
& \Rightarrow {\text{equation of bisector is }}\sqrt 3 x + y = 0 \cr} $$
66.
The points $$\left( { - a, - b} \right),\left( {0,\,0} \right),\left( {a,\,b} \right)$$ and $$\left( {{a^2},\,ab} \right)$$ are :
A
Collinear
B
Vertices of a parallelogram
C
Vertices of a rectangle
D
None of these
Answer :
Collinear
The given points are $$A\left( { - a, - b} \right),\,B\left( {0,\,0} \right),\,C\left( {a,\,b} \right){\text{ and }}D\left( {{a^2},\,ab} \right)$$
$$\eqalign{
& {\text{Slope of }}AB = \frac{b}{a} = {\text{ slope of }}BC = {\text{ slope of }}BD \cr
& \therefore A,\,B,\,C,\,D\,\,\,{\text{are collinear}}{\text{.}} \cr} $$
67.
A line passing through the point $$\left( {2,\,2} \right)$$ and the axes enclose an area $$\lambda .$$ The intercepts on the axes made by the line are given by the two roots of :
If $$a,\,b$$ are intercepts then the equation of the line is $$\frac{x}{a} + \frac{y}{b} = 1.$$ It passes through $$\left( {2,\,2} \right).$$
$$\eqalign{
& \therefore \,\frac{2}{a} + \frac{2}{b} = 1.\,\,{\text{Also}}\frac{1}{2}ab = \pm \lambda \,\,\,\,{\text{or }}ab = \pm 2\lambda \cr
& \therefore \,\frac{{a + b}}{{ab}} = \frac{1}{2}\,\,\,{\text{or}}\,\frac{{a + b}}{{ \pm 2\lambda }} = \frac{1}{2}\,\,\,{\text{or }}a + b = \pm \lambda \cr} $$ $$\therefore $$ the required equation is $${x^2} - \lambda x + 2\lambda = 0{\text{ or }}{x^2} + \lambda x - 2\lambda = 0$$
Combining these, $${x^2} - \left| \lambda \right|x + 2\left| \lambda \right| = 0.$$
68.
The orthocenter of the triangle formed by the pair of lines $$2{x^2} - xy - {y^2} + x + 2y - 1 = 0$$ and the line $$x+y+1=0$$ is :
A
$$\left( { - 1,\,0} \right)$$
B
$$\left( {0,\,1} \right)$$
C
$$\left( { - 1,\,1} \right)$$
D
none of these
Answer :
$$\left( { - 1,\,0} \right)$$
$$\eqalign{
& 2{x^2} - xy - {y^2} + x + 2y - 1 = 0 \cr
& \Rightarrow \,\left( {2x + y - 1} \right)\left( {x - y + 1} \right) = 0 \cr} $$
So, the sides $$x-y+1=0$$ and $$x+y+1=0$$ are perpendicular to each other.
$$\therefore $$ the orthocenter is the intersection of the perpendicular sides.
69.
Given a family of lines $$a\left( {2x + y + 4} \right) + b\left( {x - 2y - 3} \right) = 0,$$ the number of lines belonging to the family at a distance $$\sqrt {10} $$ from $$P\left( {2,\, - 3} \right)$$ is :
A
$$0$$
B
$$1$$
C
$$2$$
D
$$4$$
Answer :
$$1$$
The length of perpendicular from $$P\left( {2,\, - 3} \right)$$ on the given family of lines
$$\eqalign{
& = \frac{{a\left( {4 - 3 + 4} \right) + b\left( {2 + 6 - 3} \right)}}{{\sqrt {{{\left( {2a + b} \right)}^2} + {{\left( {a - 2b} \right)}^2}} }} = \pm \sqrt {10} \,\,\,\,\,\,\,\left( {{\text{given}}} \right) \cr
& \Rightarrow 5a + 5b = \pm \sqrt {10\left( {5{a^2} + 5{b^2}} \right)} \cr
& \Rightarrow 25{\left( {a + b} \right)^2} = 50\left( {{a^2} + {b^2}} \right) \cr
& \Rightarrow 25{\left( {a - b} \right)^2} = 0 \cr
& \Rightarrow a = b \cr} $$
70.
The area of the figure formed by the lines $$ax + by + c = 0,\,ax - by + c = 0,\,ax + by - c = 0$$ and $$ax - by - c = 0$$ is :
A
$$\frac{{{c^2}}}{{ab}}$$
B
$$\frac{{2{c^2}}}{{ab}}$$
C
$$\frac{{{c^2}}}{{2ab}}$$
D
$$\frac{{{c^2}}}{{4ab}}$$
Answer :
$$\frac{{2{c^2}}}{{ab}}$$
Area of triangle $$\Delta AOB = \frac{1}{2} \times \frac{c}{b} \times \frac{c}{a} = \frac{{{c^2}}}{{2ab}}$$
Total area
$$\eqalign{
& = 4 \times {\text{area }}\Delta AOB \cr
& = 4 \times \frac{{{c^2}}}{{2ab}} \cr
& = \frac{{2{c^2}}}{{ab}} \cr} $$