Straight Lines MCQ Questions & Answers in Geometry | Maths

Learn Straight Lines MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.

71. If one of the lines of $$m{y^2} + \left( {1 - {m^2}} \right)xy - m{x^2} = 0$$       is a bisector of the angle between the lines $$xy= 0,$$   then $$m$$ is-

A 1
B 2
C $$ - \frac{1}{2}$$
D $$-2$$
Answer :   1

72. Let $$P = \left( { - 1,\,0} \right),\,Q = \left( {0,\,0} \right)$$     and $$R = \left( {3,\,3\sqrt 3 } \right)$$   be three point. The equation of the bisector of the angle $$PQR$$  is :

A $$\frac{{\sqrt 3 }}{2}x + y = 0$$
B $$x + \sqrt {3y} = 0$$
C $$\sqrt 3 x + y = 0$$
D $$x + \frac{{\sqrt 3 }}{2}y = 0$$
Answer :   $$\sqrt 3 x + y = 0$$

73. A line $$L$$ intersects the three sides $$BC,\,CA$$   and $$AB$$  of a $$\Delta ABC$$   at $$P,\,Q$$  and $$R$$ respectively. Then, $$\frac{{BP}}{{PC}}.\frac{{CQ}}{{QA}}.\frac{{AR}}{{RB}}$$    is equal to :

A $$1$$
B $$0$$
C $$ - 1$$
D None of these
Answer :   $$ - 1$$

74. The shortest distance between the line $$y-x=1$$   and the curve $$x = {y^2}$$   is:

A $$\frac{{2\sqrt 3 }}{8}$$
B $$\frac{{3\sqrt 2 }}{5}$$
C $$\frac{{\sqrt 3 }}{4}$$
D $$\frac{{3\sqrt 2 }}{8}$$
Answer :   $$\frac{{3\sqrt 2 }}{8}$$

75. The straight lines $${L_1} \equiv 4x - 3y + 2 = 0,\,{L_2} \equiv 3x + 4y - 4 = 0$$         and $${L_3} \equiv x - 7y + 6 = 0$$

A form a right-angled triangle
B form a right-angled isosceles triangle
C are concurrent
D none of these
Answer :   are concurrent

76. Orthocenter of triangle with vertices (0, 0), (3, 4) and (4, 0) is -

A $$\left( {3,\,\frac{5}{4}} \right)$$
B $$\left( {3,\,12} \right)$$
C $$\left( {3,\,\frac{3}{4}} \right)$$
D $$\left( {3,\,9} \right)$$
Answer :   $$\left( {3,\,\frac{3}{4}} \right)$$

77. The perpendicular bisector of the line segment joining $$P(1, \,4)$$   and $$Q(k, \,3)$$   has $$y$$-intercept $$-4.$$  Then a possible value of $$k$$ is-

A 1
B 2
C $$-2$$
D $$-4$$
Answer :   $$-4$$

78. If $$A\left( {\sin \,\alpha ,\,\frac{1}{{\sqrt 2 }}} \right)$$   and $$B\left( {\frac{1}{{\sqrt 2 }},\,\cos \,\alpha } \right),\, - \pi \leqslant \alpha \leqslant \pi ,$$       are two points on the same side of the line $$x-y=0$$   then $$\alpha $$ belongs to the interval :

A $$\left( { - \frac{\pi }{4},\,\frac{\pi }{4}} \right) \cup \left( {\frac{\pi }{4},\,\frac{{3\pi }}{4}} \right)$$
B $$\left( { - \frac{\pi }{4},\,\frac{\pi }{4}} \right)$$
C $$\left( {\frac{\pi }{4},\,\frac{{3\pi }}{4}} \right)$$
D none of these
Answer :   $$\left( { - \frac{\pi }{4},\,\frac{\pi }{4}} \right) \cup \left( {\frac{\pi }{4},\,\frac{{3\pi }}{4}} \right)$$

79. The lines represented by $${x^2} + 2\lambda xy + 2{y^2} = 0$$     and the lines represented $$\left( {1 + \lambda } \right){x^2} - 8xy + {y^2} = 0$$      are equally inclined then $$\lambda $$ is :

A any real number
B greater than 2
C $$ \pm 2$$
D less than $$-2$$
Answer :   $$ \pm 2$$

80. Suppose $$A,\,B$$  are two points on $$2x - y + 3 = 0$$    and $$P\left( {1,\,2} \right)$$   is such that $$PA = PB.$$   Then the mid-point of $$AB$$  is :

A $$\left( { - \frac{1}{5},\,\frac{{13}}{5}} \right)$$
B $$\left( {\frac{{ - 7}}{5},\,\frac{9}{5}} \right)$$
C $$\left( {\frac{7}{5},\,\frac{{ - 9}}{5}} \right)$$
D $$\left( {\frac{{ - 7}}{5},\,\frac{{ - 9}}{5}} \right)$$
Answer :   $$\left( { - \frac{1}{5},\,\frac{{13}}{5}} \right)$$