Straight Lines MCQ Questions & Answers in Geometry | Maths
Learn Straight Lines MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.
71.
If one of the lines of $$m{y^2} + \left( {1 - {m^2}} \right)xy - m{x^2} = 0$$ is a bisector of the angle between the lines $$xy= 0,$$ then $$m$$ is-
A
1
B
2
C
$$ - \frac{1}{2}$$
D
$$-2$$
Answer :
1
Equation of bisectors of lines, $$xy=0$$ are $$y = \pm x$$
Put $$y = \pm x$$ in the given equation
$$\eqalign{
& m{y^2} + \left( {1 - {m^2}} \right)xy - m{x^2} = 0 \cr
& \therefore m{x^2} + \left( {1 - {m^2}} \right){x^2} - m{x^2} = 0 \cr
& \Rightarrow 1 - {m^2} = 0\,\,\, \Rightarrow m = \pm 1 \cr} $$
72.
Let $$P = \left( { - 1,\,0} \right),\,Q = \left( {0,\,0} \right)$$ and $$R = \left( {3,\,3\sqrt 3 } \right)$$ be three point. The equation of the bisector of the angle $$PQR$$ is :
A
$$\frac{{\sqrt 3 }}{2}x + y = 0$$
B
$$x + \sqrt {3y} = 0$$
C
$$\sqrt 3 x + y = 0$$
D
$$x + \frac{{\sqrt 3 }}{2}y = 0$$
Answer :
$$\sqrt 3 x + y = 0$$
The coordinates of points $$P,\,Q,\,R$$ are $$\left( { - 1,\,0} \right),\,\left( {0,\,0} \right),\,\left( {3,\,3\sqrt 3 } \right)$$ respectively.
Slope of $$QR = \frac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}} = \frac{{3\sqrt 3 }}{3}$$
$$\eqalign{
& \Rightarrow \tan \,\theta = \sqrt 3 \cr
& \Rightarrow \theta = \frac{\pi }{3} \cr
& \Rightarrow \angle RQX = \frac{\pi }{3} \cr
& \therefore \,\angle RQP = \pi - \frac{\pi }{3} = \frac{{2\pi }}{3}\,; \cr} $$
Let $$QM$$ bisects the $$\angle PQR,$$
$$\therefore $$ Slope of the line $$QM = \tan \frac{{2\pi }}{3} = - \sqrt 3 $$
$$\therefore $$ Equation of line $$QM$$ is
$$\eqalign{
& \left( {y - 0} \right) = - \sqrt 3 \left( {x - 0} \right) \cr
& \Rightarrow y = - \sqrt 3 x \cr
& \Rightarrow \sqrt 3 x + y = 0 \cr} $$
73.
A line $$L$$ intersects the three sides $$BC,\,CA$$ and $$AB$$ of a $$\Delta ABC$$ at $$P,\,Q$$ and $$R$$ respectively. Then, $$\frac{{BP}}{{PC}}.\frac{{CQ}}{{QA}}.\frac{{AR}}{{RB}}$$ is equal to :
A
$$1$$
B
$$0$$
C
$$ - 1$$
D
None of these
Answer :
$$ - 1$$
Let $$A\left( {{x_1},\,{y_1}} \right),\,B\left( {{x_2},\,{y_2}} \right)$$ and $$C\left( {{x_3},\,{y_3}} \right)$$ be the vertices of $$\Delta ABC$$ and let $$lx + my + n = 0$$ be the equation of the line. If $$P$$ divides $$BC$$ in the ratio $$\lambda :1,$$ then the coordinates of $$P$$ are $$\left( {\frac{{\lambda {x_3} + {x_2}}}{{\lambda + 1}},\,\frac{{\lambda {y_3} + {y_2}}}{{\lambda + 1}}} \right)$$
Also, as $$P$$ lies on $$L,$$ we have
$$\eqalign{
& l\left( {\frac{{\lambda {x_3} + {x_2}}}{{\lambda + 1}}} \right) + m\left( {\frac{{\lambda {y_3} + {y_2}}}{{\lambda + 1}}} \right) + n = 0 \cr
& \Rightarrow - \frac{{l{x_2} + m{y_2} + n}}{{l{x_3} + m{y_3} + n}} = \lambda = \frac{{BP}}{{PC}}......\left( {\text{i}} \right) \cr} $$
Similarly, we obtain
$$\eqalign{
& \frac{{CQ}}{{QA}} = - \frac{{l{x_3} + m{y_3} + n}}{{l{x_1} + m{y_1} + n}}......\left( {{\text{ii}}} \right) \cr
& {\text{and }}\frac{{AR}}{{RB}} = - \frac{{l{x_1} + m{y_1} + n}}{{l{x_2} + m{y_2} + n}}......\left( {{\text{iii}}} \right) \cr} $$
On multiplying equations $$\left( {\text{i}} \right),\,\left( {{\text{ii}}} \right)$$ and $$\left( {{\text{iii}}} \right),$$ we get
$$\frac{{BP}}{{PC}}.\frac{{CQ}}{{QA}}.\frac{{AR}}{{RB}} = - 1$$
74.
The shortest distance between the line $$y-x=1$$ and the curve $$x = {y^2}$$ is:
A
$$\frac{{2\sqrt 3 }}{8}$$
B
$$\frac{{3\sqrt 2 }}{5}$$
C
$$\frac{{\sqrt 3 }}{4}$$
D
$$\frac{{3\sqrt 2 }}{8}$$
Answer :
$$\frac{{3\sqrt 2 }}{8}$$
Let $$\left( {{a^2},\,a} \right)$$ be the point of shortest distance on $$x = {y^2}.$$ Then distance between $$\left( {{a^2},\,a} \right)$$ and line $$x-y+1=0$$ is given by
$$D = \frac{{{a^2} - a + 1}}{{\sqrt 2 }} = \frac{1}{{\sqrt 2 }}\left[ {{{\left( {a - \frac{1}{2}} \right)}^2} + \frac{3}{4}} \right]$$
It is minimum when $$a = \frac{1}{2}$$ and $${D_{\min .}} = \frac{3}{{4\sqrt 2 }} = \frac{{3\sqrt 2 }}{8}$$
76.
Orthocenter of triangle with vertices (0, 0), (3, 4) and (4, 0) is -
A
$$\left( {3,\,\frac{5}{4}} \right)$$
B
$$\left( {3,\,12} \right)$$
C
$$\left( {3,\,\frac{3}{4}} \right)$$
D
$$\left( {3,\,9} \right)$$
Answer :
$$\left( {3,\,\frac{3}{4}} \right)$$
We know that orthocenter is the meeting point of altitudes of a $$\Delta $$
Equation of alt. AD
$$ \Rightarrow $$ line parallel to $$y$$-axis through (3, 4)
$$ \Rightarrow x = 3.....(1)$$
Similarly equation of $$OE \bot AB$$ is
$$\eqalign{
& y = - \frac{{3 - 4}}{{4 - 0}}x \cr
& \Rightarrow y = \frac{x}{4}.....(2) \cr} $$
Solving (1) and (2), we get orthocenter as $$\left( {3,\,\frac{3}{4}} \right).$$
77.
The perpendicular bisector of the line segment joining $$P(1, \,4)$$ and $$Q(k, \,3)$$ has $$y$$-intercept $$-4.$$ Then a possible value of $$k$$ is-
78.
If $$A\left( {\sin \,\alpha ,\,\frac{1}{{\sqrt 2 }}} \right)$$ and $$B\left( {\frac{1}{{\sqrt 2 }},\,\cos \,\alpha } \right),\, - \pi \leqslant \alpha \leqslant \pi ,$$ are two points on the same side of the line $$x-y=0$$ then $$\alpha $$ belongs to the interval :