Unit and Measurement MCQ Questions & Answers in Basic Physics | Physics
Learn Unit and Measurement MCQ questions & answers in Basic Physics are available for students preparing for IIT-JEE, NEET, Engineering and Medical Entrance exam.
151.
Planck’s constant has the dimensions of
A
linear momentum
B
angular momentum
C
energy
D
power
Answer :
angular momentum
$$\eqalign{
& E = hv \cr
& \Rightarrow h = {\text{Planck's constant}} = \frac{{{\text{Energy}}\left( E \right)}}{{{\text{frequency}}\left( v \right)}} \cr
& \therefore \left[ h \right] = \frac{E}{v} = \frac{{\left[ {M{L^2}{T^{ - 1}}} \right]}}{{\left[ {{T^{ - 1}}} \right]}} = \left[ {M{L^2}{T^{ - 1}}} \right] \cr
& \left( {\text{A}} \right){\text{ Linear momentum}} = {\text{Mass}} \times {\text{velocity}} \cr
& {\text{or}}\,p = m \times v = \left[ M \right]\left[ {L{T^{ - 1}}} \right] = \left[ {ML{T^{ - 1}}} \right] \cr
& \left( {\text{B}} \right){\text{Angular momentum}} = {\text{Moment of inertia}} \times {\text{angular velocity}} \cr
& {\text{or,}}\,L = I \times \omega = m{r^2}\omega \,\left[ {\because I = m{r^2}} \right] \cr
& \therefore \left[ L \right] = \left[ M \right]\left[ {{L^2}} \right]\left[ {{T^{ - 1}}} \right] = \left[ {M{L^2}{T^{ - 1}}} \right] \cr
& \left( {\text{C}} \right){\text{Energy}}\,\left[ E \right] = \left[ {M{L^2}{T^{ - 2}}} \right] \cr
& \left( {\text{D}} \right)\,{\text{Power}} = {\text{Force}} \times {\text{velocity}} \cr
& {\text{or,}}\,P = F \times v \cr
& \therefore \left[ P \right] = \left[ {ML{T^{ - 2}}} \right]\left[ {L{T^{ - 1}}} \right] = \left[ {M{L^2}{T^{ - 3}}} \right] \cr} $$
Hence, option (B) is correct. NOTE
According to homogeneity of dimensions, the dimensions of all the terms in a physical expression should be same. e.g. in the physical expression $$s = ut{\text{ + }}\frac{1}{2}a{t^2},$$ the dimensions of $$s, ut$$ and $$\frac{1}{2}a{t^2}$$ all are same.
152.
A boy recalls the relation almost correctly but forgets where to put the constant $$c$$ (speed of light). He writes; $$m = \frac{{{m_0}}}{{\sqrt {1 - {v^2}} }},$$ where $$m$$ and $${{m_0}}$$ stand for masses and $$v$$ for speed. Right place of $$c$$ is
A
$$m = \frac{{c{m_0}}}{{\sqrt {1 - {v^2}} }}$$
B
$$m = \frac{{{m_0}}}{{c\sqrt {1 - {v^2}} }}$$
C
$$m = \frac{{{m_0}}}{{\sqrt {{c^2} - {v^2}} }}$$
D
$$m = \frac{{{m_0}}}{{\sqrt {1 - \frac{{{v^2}}}{{{c^2}}}} }}$$
In, $$1 - {v^2},{v^2}$$ should be dimensionsless, so it should be $${1 - \frac{{{v^2}}}{{{c^2}}}}.$$
153.
A wire of length $$\ell = 6 \pm 0.06\,cm$$ and radius $$r = 0.5 \pm 0.005\,cm$$ and mass $$m = 0.3 \pm 0.003\,gm.$$ Maximum percentage error in density is-
Only same dimensional quantity can be added or subtracted.
155.
The dimensions of $${\left( {{\mu _0}{\varepsilon _0}} \right)^{ - \frac{1}{2}}}$$ are
A
$$\left[ {{L^{\frac{1}{2}}}{T^{ - \frac{1}{2}}}} \right]$$
B
$$\left[ {{L^{ - 1}}T} \right]$$
C
$$\left[ {L{T^{ - 1}}} \right]$$
D
$$\left[ {{L^{\frac{1}{2}}}{T^{\frac{1}{2}}}} \right]$$
Answer :
$$\left[ {L{T^{ - 1}}} \right]$$
$${\left( {{\mu _0}{\varepsilon _0}} \right)^{ - \frac{1}{2}}}$$ is the expression for velocity of light.
As $$c = \frac{1}{{\sqrt {{\mu _0}{\varepsilon _0}} }}$$
So, dimension of $$c = \left[ {L{T^{ - 1}}} \right]$$
156.
Resistance $$R = \frac{V}{I},$$ where $$V = \left( {100 \pm 5} \right)V$$ and $$I = \left( {10 \pm 0.2} \right)A.$$ Find percentage error in $$R.$$
157.
One centimetre on the main scale of a vernier callipers is divided into 10 equal parts. If 10 divisions of vernier coincide with 8 small divisions of the main scale, the least count of vernier callipers is
A
$$0.01\,cm$$
B
$$0.02\,cm$$
C
$$0.05\,cm$$
D
$$0.005\,cm$$
Answer :
$$0.02\,cm$$
The value of 1 division of main scale $$ = \frac{1}{{10}} = 0.1\,cm$$
The value of 1 division of vernier scale $$ = \frac{{8 \times 0.1}}{{10}} = 0.08\,cm$$
Thus, $$L.C. = 0.1 - 0.08 = 0.02\,cm$$
158.
Unit of magnetic moment is
A
$$ampere - metr{e^2}$$
B
$$ampere - metre$$
C
$$weber - metr{e^2}$$
D
$$weber/metre$$
Answer :
$$ampere - metr{e^2}$$
$$\eqalign{
& M = {\text{Pole}}\,\,{\text{strength}} \times {\text{length}} \cr
& = amp - metre \times metre \cr
& = amp - metr{e^2} \cr} $$
159.
If the dimensions of a physical quantity are given by $$\left[ {{M^a}{L^b}{T^c}} \right],$$ then the physical quantity will be
160.
There are two Vernier calipers both of which have $$1 \,cm$$ divided into $$10$$ equal divisions on the main scale. The Vernier scale of one of the calipers $$\left( {{C_1}} \right)$$ has $$10$$ equal divisions that correspond to $$9$$ main scale divisions. The Vernier scale of the other caliper $$\left( {{C_2}} \right)$$ has $$10$$ equal divisions that correspond to $$11$$ main scale divisions. The readings of the two calipers are shown in the figure. The measured values (in $$cm$$ ) by calipers $${C_1}$$ and $${C_2},$$ respectively, are-