Unit and Measurement MCQ Questions & Answers in Basic Physics | Physics
Learn Unit and Measurement MCQ questions & answers in Basic Physics are available for students preparing for IIT-JEE, NEET, Engineering and Medical Entrance exam.
161.
Which of the following will have the dimensions of time?
A
$$LC$$
B
$$\frac{R}{L}$$
C
$$\frac{L}{R}$$
D
$$\frac{C}{L}$$
Answer :
$$\frac{L}{R}$$
$$\frac{L}{R}$$ is time constant of $$R-L$$ circuit so, dimensions of $$\frac{L}{R}$$ is same as that of time. Alternative
$$\frac{{{\text{Dimensions of}}\,L}}{{{\text{Dimensions of}}\,R}} = \frac{{\left[ {M{L^2}{T^{ - 2}}{A^{ - 2}}} \right]}}{{\left[ {M{L^2}{T^{ - 3}}{A^{ - 2}}} \right]}} = \left[ T \right]$$
162.
Pressure depends on distance as, $$P = \frac{\alpha }{\beta }exp\left( { - \frac{{\alpha z}}{{k\theta }}} \right),$$ where $$\alpha ,$$ $$\beta $$ are constants, $$z$$ is distance, $$k$$ is Boltzman’s constant and $$\theta $$ is temperature. The dimension of $$\beta $$ are-
A
$${M^0}{L^0}{T^0}$$
B
$${M^{ - 1}}{L^{ - 1}}{T^{ - 1}}$$
C
$${M^0}{L^2}{T^0}$$
D
$${M^{ - 1}}{L^1}{T^2}$$
Answer :
$${M^0}{L^2}{T^0}$$
Union of $$k$$ is joules per kelvin or dimensional formula of $$k$$ is $$\left[ {M{L^2}{T^{ - 2}}{\theta ^{ - 1}}} \right]$$ Note: The power of an exponent is a number.
Therefore, dimensionally $$\frac{{\alpha z}}{{k\theta }} = {M^ \circ }{L^ \circ }{T^ \circ }$$
$$\eqalign{
& \therefore \alpha = \frac{{k\theta }}{z} \cr
& \therefore \alpha = \frac{{\left[ {M{L^2}{T^{ - 2}}{\theta ^{ - 1}}} \right]\left[ \theta \right]}}{{\left[ L \right]}} = \left[ {ML{T^{ - 2}}} \right] \cr} $$
and dimensionally $$P = \frac{\alpha }{\beta } \Rightarrow \beta = \frac{\alpha }{P}$$
$$\therefore \left[ \beta \right] = \frac{{ML{T^{ - 2}}}}{{M{L^{ - 1}}{T^{ - 2}}}} = {M^0}{L^2}{T^0}$$
163.
lf $$x = at + b{t^2},$$ where $$x$$ is the distance travelled by the body in kilometers while $$t$$ is the time in seconds, then the unit of $$b$$ is
A
$$km/s$$
B
$$kms$$
C
$$km/{s^2}$$
D
$$km{s^2}$$
Answer :
$$km/{s^2}$$
$$\left[ x \right] = \left[ {b{t^2}} \right].{\text{Hence}}\,\left[ b \right] = \left[ {\frac{x}{{{t^2}}}} \right] = km/{s^2}$$
164.
The dimensions of universal gravitational constant are
According to Newton's law of gravitation, the force of attraction between two masses $${m_1}$$ and $${m_2}$$ separated by a distance $$r$$ is,
$$F = \frac{{G{m_1}{m_2}}}{{{r^2}}} \Rightarrow G = \frac{{F{r^2}}}{{{m_1}{m_2}}}$$
Substituting the dimensions for the quantities on the right hand side, we obtain
Dimensions of $$G = \frac{{\left[ {ML{T^{ - 2}}} \right]\left[ {{L^2}} \right]}}{{{{\left[ M \right]}^2}}} = \left[ {{M^{ - 1}}{L^3}{T^{ - 2}}} \right]$$
165.
A quantity $$X$$ is given by $${\varepsilon _0}L\frac{{\Delta V}}{{\Delta t}}$$ where $${ \in _0}$$ is the permittivity of the free space, $$L$$ is a length, $$\Delta V$$ is a potential difference and $$\Delta t$$ is a time interval. The dimensional formula for $$X$$ is the same as that of-
166.
You measure two quantities as $$A = 1.0\,m \pm 0.2\,m,B = 2.0\,m \pm 0.2\,m.$$ We should report correct value for $$\sqrt {AB} $$ as
A
$$1.4\,m \pm 0.4\,m$$
B
$$1.41\,m \pm 0.15\,m$$
C
$$1.4\,m \pm 0.3\,m$$
D
$$1.4\,m \pm 0.2\,m$$
Answer :
$$1.4\,m \pm 0.2\,m$$
As given that,
$$\eqalign{
& A = 1.0\,m \pm 0.2\,m,B = 2.0\,m \pm 0.2\,m \cr
& {\text{So,}}\,\,X = \sqrt {AB} = \sqrt {\left( {1.0} \right)\left( {2.0} \right)} = 1.414\,m \cr} $$
Rounding off upto two significant digit
$$X = 1.4\,m = \left( r \right)\,\,\left( {{\text{Let}}} \right)$$
$$\eqalign{
& \frac{{\Delta x}}{x} = \frac{1}{2}\left[ {\frac{{\Delta A}}{A} + \frac{{\Delta B}}{B}} \right] \cr
& = \frac{1}{2}\left[ {\frac{{0.2}}{{1.0}} + \frac{{0.2}}{{2.0}}} \right] \cr
& = 0.212 \cr} $$
Rounding off upto one significant digit
$$\Delta x = 0.2\,m = \Delta r\,\,\left( {{\text{Let}}} \right)$$
So, correct value of $$\sqrt {AB} = r + \Delta r = \left( {1.4 \pm 0.2} \right)m$$
167.
The density of a material in CGS system of units is $$4g/c{m^3}.$$ In a system of units in which unit of length is $$10\,cm$$ and unit of mass is $$100\,g,$$ the value of density of material will be
A
$$0.4$$
B
$$40$$
C
$$400$$
D
$$0.04$$
Answer :
$$40$$
In CGS system, $$d = 4\frac{g}{{c{m^3}}}$$
The unit of mass is $$100\,g$$ and unit of length is $$10\,cm,$$ so
$$\eqalign{
& {\text{density}} = \frac{{4\left( {\frac{{100g}}{{100}}} \right)}}{{{{\left( {\frac{{10}}{{10}}cm} \right)}^3}}} = \frac{{\left( {\frac{4}{{100}}} \right)}}{{{{\left( {\frac{1}{{10}}} \right)}^3}}}\frac{{\left( {100g} \right)}}{{{{\left( {10\,cm} \right)}^3}}} \cr
& = \frac{4}{{100}} \times {\left( {10} \right)^3} \cdot \frac{{100g}}{{{{\left( {10\,cm} \right)}^3}}} = 40\,unit \cr} $$
Mathematically, magnetic flux
$$\phi = BA\,......\left( {\text{i}} \right)$$
but magnetic force
$$F = Bil\,{\text{or}}\,B = \frac{F}{{il}}$$
Putting the value of $$B$$ in Eq. (i), we have
$$\phi = \frac{F}{{il}}A$$
Thus, dimensions of $$\phi = \frac{{\left[ {ML{T^{ - 2}}} \right]\left[ {{L^2}} \right]}}{{\left[ {AL} \right]}}$$
$$ = \left[ {M{L^2}{T^{ - 2}}{A^{ - 1}}} \right]$$