In an adiabatic process, $$Q = 0$$
So, from 1
st law of thermodynamics, $$\Delta Q = \Delta U + \Delta W$$
$$\eqalign{
& {\text{As}}\,\,\Delta Q = 0 \cr
& {\text{so,}}\,\,W = - \Delta U = - n{C_V}\Delta T \cr
& = - n\left( {\frac{R}{{\gamma - 1}}} \right)\left( {{T_f} - {T_i}} \right) \cr
& = \frac{{nR}}{{\gamma - 1}}\left( {{T_i} - {T_f}} \right)\,.....\left( {\text{i}} \right) \cr} $$
Given, work done, $$W = 6R\,J,n = 1\;mol,R = 8.31\,J/mol - K,\gamma = \frac{5}{3},{T_i} = TK$$
Substituting given values in Eq. (i), we get
$$\eqalign{
& \therefore 6R = \frac{R}{{\left( {\frac{5}{3} - 1} \right)}}\left( {T - {T_f}} \right) \cr
& \Rightarrow 6R = \frac{{3R}}{2}\left( {T - {T_f}} \right) \cr
& \Rightarrow T - {T_f} = 4 \cr
& \therefore {T_f} = \left( {T - 4} \right)K \cr} $$
NOTE
Adiabatic expansions of mono, dia and polyatomic gases are shown below.
$$1 \to {\text{monoatomic}}\,\,\,2 \to {\text{diatomic}}\,\,\,3 \to {\text{polyatomic}}$$