Chemical Kinetics MCQ Questions & Answers in Physical Chemistry | Chemistry

Learn Chemical Kinetics MCQ questions & answers in Physical Chemistry are available for students perparing for IIT-JEE, NEET, Engineering and Medical Enternace exam.

291. In a reversible reaction, the energy of activation of the forward reaction is 50 $$kcal.$$  The energy of activation for the reverse reaction will be

A < 50$$\,kcal$$
B 50$$\,kcal$$
C either greater than or less than 50 $$kcal$$
D > 50$$\,kcal$$
Answer :   either greater than or less than 50 $$kcal$$

292. For a general reaction $$X \to Y,$$   the plot of conc. of $$X$$ vs time is given in the figure. What is the order of the reaction and what are the units of rate constant?

A $${\text{Zero,}}\,mol\,{L^{ - 1}}\,{s^{ - 1}}$$
B $${\text{First,}}\,mol\,{L^{ - 1}}\,{s^{ - 1}}$$
C $${\text{First,}}\,{s^{ - 1}}$$
D $${\text{Zero,}}\,L\,mo{l^{ - 1}}\,{s^{ - 1}}$$
Answer :   $${\text{Zero,}}\,mol\,{L^{ - 1}}\,{s^{ - 1}}$$

293. The decomposition of phosphine $$\left( {P{H_3}} \right)$$  on tungsten at low pressure is a first-order reaction. It is because the

A rate is proportional to the surface coverage
B rate is inversely proportional to the surface coverage
C rate is independent of the surface coverage
D rate of decomposition is very slow
Answer :   rate is proportional to the surface coverage

294. The activation energy for a reaction which doubles the rate when the temperature is raised from $$298\,K$$  to $$308\,K$$  is

A $$59.2\,kJ\,mo{l^{ - 1}}$$
B $$39.2\,kJ\,mo{l^{ - 1}}$$
C $$52.9\,kJ\,mo{l^{ - 1}}$$
D $$29.5\,kJ\,mo{l^{ - 1}}$$
Answer :   $$52.9\,kJ\,mo{l^{ - 1}}$$

295. For a first-order reaction, the half-life period is independent of

A initial concentration
B cube root of initial concentration
C first power of final concentration
D square root of final concentration
Answer :   initial concentration

296. Consider the reaction, $${N_2}\left( g \right) + 3{H_2}\left( g \right) \to 2N{H_3}\left( g \right)$$
The equality relationship between $$\frac{{d\left[ {N{H_3}} \right]}}{{dt}}$$  and $$ - \frac{{d\left[ {{H_2}} \right]}}{{dt}}$$  is

A $$\frac{{d\left[ {N{H_3}} \right]}}{{dt}} = - \frac{1}{3}\frac{{d\left[ {{H_2}} \right]}}{{dt}}$$
B $$ + \frac{{d\left[ {N{H_3}} \right]}}{{dt}} = - \frac{2}{3}\frac{{d\left[ {{H_2}} \right]}}{{dt}}$$
C $$ + \frac{{d\left[ {N{H_3}} \right]}}{{dt}} = - \frac{3}{2}\frac{{d\left[ {{H_2}} \right]}}{{dt}}$$
D $$\frac{{d\left[ {N{H_3}} \right]}}{{dt}} = - \frac{{d\left[ {{H_2}} \right]}}{{dt}}$$
Answer :   $$ + \frac{{d\left[ {N{H_3}} \right]}}{{dt}} = - \frac{2}{3}\frac{{d\left[ {{H_2}} \right]}}{{dt}}$$

297. The reaction, $$2NO + B{r_2} \to 2NOBr,$$     obeys the following mechanism : NO+B r 2 Fast NOB r 2 ;     \[NOB{{r}_{2}}+NO\xrightarrow{\text{Slow}}2NOBr\]
The rate expression of the above reaction can be written as

A $$r = k{\left[ {NO} \right]^2}\left[ {B{r_2}} \right]$$
B $$r = k\left[ {NO} \right]\left[ {B{r_2}} \right]$$
C $$r = k\left[ {NO} \right]{\left[ {B{r_2}} \right]^2}$$
D $$r = k\left[ {NOB{r_2}} \right]$$
Answer :   $$r = k{\left[ {NO} \right]^2}\left[ {B{r_2}} \right]$$

298. The half-life of a radioisotope is four hours. If the initial mass of the isotope was $$200 g,$$  the mass remaining after 24 hours undecayed is

A $$3.125 g$$
B $$2.084 g$$
C $$1.042 g$$
D $$4.167 g$$
Answer :   $$3.125 g$$

299. The velocity of a reaction is doubled for every $${10^ \circ }C$$  rise in $$temp.$$  If the $$temp.$$  is raised to $${50^ \circ }C$$  from $${0^ \circ }C$$  the reaction velocity increases by about

A 12 times
B 16 times
C 32 times
D 50 times
Answer :   32 times

300. In a first order reaction, the concentration of reactant decreases from $$400\,mol\,{L^{ - 1}}$$   to $$25\,mol\,{L^{ - 1}}$$   in 200 seconds. The rate constant for the reaction is

A $$1.01386\,{s^{ - 1}}$$
B $$2 \times {10^{ - 4}}\,{s^{ - 1}}$$
C $$1.386 \times {10^{ - 2}}\,{s^{ - 1}}$$
D $$3.4 \times {10^{ - 4}}\,{s^{ - 1}}$$
Answer :   $$1.386 \times {10^{ - 2}}\,{s^{ - 1}}$$