Sets and Relations MCQ Questions & Answers in Calculus | Maths
Learn Sets and Relations MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.
91.
If \[f:R \to R,\,f\left( x \right) = \left\{ \begin{array}{l}
\,x\left| x \right| - 4,\,\,\,\,\,\,\,\,\,x\, \in \,Q\\
x\left| x \right| - \sqrt 3 ,\,\,\,\,\,x\, \notin \,Q
\end{array} \right.,\] then $$f\left( x \right)$$ is :
A
one to one and onto
B
many to one and onto
C
one to one and into
D
many to one and into
Answer :
many to one and into
$$\eqalign{
& f\left( 2 \right) = f\left( {{3^{\frac{1}{4}}}} \right) \Rightarrow \,{\text{many to one function and}} \cr
& f\left( x \right) \ne - \sqrt 3\,\,\,\forall \,x\, \in \,R \Rightarrow \,{\text{into function}} \cr} $$
92.
If $$A = \left\{ {1,\,2,\,3,\,4,\,5} \right\},$$ then the number of proper subject of $$A$$ is :
A
$$31$$
B
$$38$$
C
$$48$$
D
$$54$$
Answer :
$$31$$
Note : Number of proper subjects of $$A = {2^n} - 1$$
Given : $$A = \left\{ {1,\,2,\,3,\,4,\,5} \right\}.$$ Here $$n = 5$$
$$\therefore $$ number of proper subjects $$ = {2^5} - 1 = 31$$
93.
Let $$f:R \to R$$ be a function defined by $$f\left( x \right) = \frac{{x - m}}{{x - n}},$$ where $$m \ne n,$$ then :
A
$$f$$ is one-one onto
B
$$f$$ is one-one into
C
$$f$$ is many-one onto
D
$$f$$ is many-one into
Answer :
$$f$$ is one-one into
Let $$f:R \to R$$ be a function defined by $$f\left( x \right) = \frac{{x - m}}{{x - n}}$$
$$\eqalign{
& {\text{For any }}\left( {x,\,y} \right)\, \in \,R.\,{\text{Let }}f\left( x \right) = f\left( y \right) \cr
& \Rightarrow \frac{{x - m}}{{x - n}} = \frac{{y - m}}{{y - n}} \cr
& \Rightarrow x = y\,\,\therefore \,f{\text{ is one - one}} \cr
& {\text{Let }}\alpha \, \in \,R\,\,{\text{such that }}f\left( x \right) = \alpha \cr
& \Rightarrow \alpha = \frac{{x - m}}{{x - n}} \cr
& \Rightarrow \left( {x - n} \right)\alpha = x - m \cr
& \Rightarrow x = \frac{{n\alpha - m}}{{\alpha - 1}}.{\text{ for }}\alpha = 1,\,x\, \notin \,R \cr
& {\text{So, }}f{\text{ is not onto}}{\text{.}} \cr} $$
94.
Let $$f\left( x \right) = 2{x^2},\,g\left( x \right) = 3x + 2$$ and $$fog\left( x \right) = 18{x^2} + 24x + c,$$ then $$c = ?$$
95.
Let $$A$$ and $$B$$ be two finite sets having $$m$$ and $$n$$ elements respectively. Then, the total number of mapping from $$A$$ and $$B$$ is :
A
$$mn$$
B
$${2^{mn}}$$
C
$${m^{n}}$$
D
$${n^{m}}$$
Answer :
$${n^{m}}$$
The image of any given elements in $$A$$ can be any one of the image of $$n$$ element in $$B$$.
$$\therefore $$ The $$m$$ elements in $$A$$ can be assigned images $$n \times n..... \times n\left( {m{\text{ times}}} \right) = {n^m}{\text{ ways}}$$
$$\therefore $$ Total mapping from $$A$$ and $$B = {n^m}$$
96.
If $$\left( {A - B} \right) \cup \left( {B - A} \right) = A$$ for subsets $$A$$ and $$B$$ of the universal set $$U,$$ then which one of the following is correct ?
A
$$B$$ is proper non-empty subset of $$A$$
B
$$A$$ and $$B$$ are non-empty disjoint sets
C
$$B = \phi $$
D
None of the above
Answer :
$$B = \phi $$
For subsets $$A$$ and $$B$$ of $$U,$$
If $$\left( {A - B} \right) \cup \left( {B - A} \right) = A,$$
$$ \Rightarrow \,B = \phi $$
97.
Which of the following is a singleton set ?
A
$$\left\{ {x:\left| x \right| = 5,\,x\, \in \,N} \right\}$$
B
$$\left\{ {x:\left| x \right| = 6,\,x\, \in \,Z} \right\}$$
$$\eqalign{
& \left( {\text{A}} \right)\,\,\left| x \right| = 5\,\, \Rightarrow x = 5\,\,\left[ {\because \,x\, \in \,N\,} \right] \cr
& \therefore \,{\text{ Given set is singleton}}{\text{.}} \cr
& \left( {\text{B}} \right)\,\,\left| x \right| = 6\,\, \Rightarrow x = - 6,\,6\,\,\left[ {\because \,x\, \in \,Z\,} \right] \cr
& \therefore \,{\text{ Given set is not singleton}}{\text{.}} \cr
& \left( {\text{C}} \right)\,\,{x^2} + 2x + 1 = 0\,\, \cr
& \Rightarrow {\left( {x + 1} \right)^2} = 0 \cr
& \Rightarrow x = - 1,\, - 1 \cr
& {\text{Since, }} - 1\, \notin \,N, \cr
& \therefore \,\,{\text{Given set}} = \phi \cr
& \left( {\text{D}} \right)\,\,{x^2} = 7\,\, \Rightarrow x = \pm \sqrt 7 \cr} $$
98.
There are $$600$$ student in a school. If $$400$$ of them can speak Telugu, $$300$$ can speak Hindi, then the number of students who can speak both Telugu and Hindi is :
A
$$100$$
B
$$200$$
C
$$300$$
D
$$400$$
Answer :
$$100$$
Let $$A \equiv $$ Set of Tamil speaking students and $$B \equiv $$ Hindi speaking students
$$\eqalign{
& n\left( A \right) = 400,\,n\left( B \right) = 300{\text{ and }}n\left( {A \cup B} \right) = 600 \cr
& n\left( {A \cup B} \right) = n\left( A \right) + n\left( B \right) - n\left( {A \cap B} \right) \cr
& \Rightarrow n\left( {A \cap B} \right) = n\left( A \right) + n\left( B \right) - n\left( {A \cup B} \right) \cr
& \Rightarrow n\left( {A \cap B} \right) = 400 + 300 - 600 = 100 \cr} $$
99.
Let $$S$$ = {1, 2, 3, 4}. The total number of unordered pairs of disjoint subsets of $$S$$ is equal to
A
25
B
34
C
42
D
41
Answer :
41
$$S$$ = {1, 2, 3, 4}
Let $$P$$ and $$Q$$ be disjoint subsets of $$S$$
Now for any element $$a \in s,$$ following cases are possible
$$a \in P\,{\text{and }}a \notin Q,a \notin P\,{\text{and }}a \in Q,a \notin P\,{\text{and }}a \notin Q$$
⇒ For every element there are three option
∴ Total option $$ = {3^4} = 81$$
Here $$P \ne Q$$ except when $$P = Q = \phi $$
∴ 80 ordered pairs $$(P, Q)$$ are there for which $$P \ne Q.$$
Hence total number of unordered pairs of disjoint subsets
$$\eqalign{
& = \frac{{80}}{2} + 1 \cr
& = 41 \cr} $$
100.
Let $$A$$ and $$B$$ be two sets containing four and two elements respectively. Then the number of subsets of the set $$A \times B,$$ each having at least three elements is:
A
275
B
510
C
219
D
256
Answer :
219
$$\eqalign{
& n\left( A \right) = 4,n\left( B \right) = 2 \cr
& \Rightarrow \,\,n\left( {A \times B} \right) = 8 \cr} $$
The number of subsets of $$A \times B$$ having atleast
3 = elements = $$^8{C_3} + {\,^8}{C_4} + ..... + {\,^8}{C_8}$$
$$\eqalign{
& = {2^8} - {\,^8}{C_0} - {\,^8}{C_1} - {\,^8}{C_2} \cr
& = 256 - 1 - 8 - 28 \cr
& = 219 \cr} $$