Sets and Relations MCQ Questions & Answers in Calculus | Maths
Learn Sets and Relations MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.
101.
If $$A = \left\{ {a,\,b,\,c,\,d} \right\},\,B = \left\{ {1,\,2,\,3} \right\},$$ which of the following sets of ordered pairs are not relations from $$A$$ to $$B\,?$$
A
$$\left\{ {\left( {a,\,1} \right),\,\left( {a,\,3} \right)} \right\}$$
B
$$\left\{ {\left( {b,\,1} \right),\,\left( {c,\,2} \right),\,\left( {d,\,1} \right)} \right\}$$
C
$$\left\{ {\left( {a,\,2} \right),\,\left( {b,\,3} \right),\,\left( {3,\,b} \right)} \right\}$$
D
$$\left\{ {\left( {a,\,1} \right),\,\left( {b,\,2} \right),\,\left( {c,\,3} \right)} \right\}$$
$$\eqalign{
& \left\{ {\left( {a,\,1} \right),\,\left( {a,\,3} \right)} \right\} \subseteq A \times B\,\,\therefore \,{\text{This is a relation}} \cr
& \left\{ {\left( {b,\,1} \right),\,\left( {c,\,2} \right),\,\left( {d,\,1} \right)} \right\} \subseteq A \times B\,\,\therefore \,{\text{This is a relation}} \cr
& \left( {3,\,b} \right)\, \notin \,A \times B \cr
& \therefore \,\left\{ {\left( {a,\,2} \right),\,\left( {b,\,3} \right),\,\left( {3,\,b} \right)} \right\}{\text{ is not a relation from }}A{\text{ to }}B \cr
& \left\{ {\left( {a,\,1} \right),\,\left( {b,\,2} \right),\,\left( {c,\,3} \right)} \right\}\,\,{\text{is a relation from }}A{\text{ to }}B \cr} $$
102.
If $$A, B$$ and $$C$$ are three sets such that $$A \cap B = A \cap C$$ and $$A \cup B = A \cup C,$$ then
A
$$A = C$$
B
$$B = C$$
C
$$A \cap B = \phi $$
D
$$A = B$$
Answer :
$$B = C$$
Let $$x \in A\,\,{\text{and }}x \in B$$
$$\eqalign{
& \Leftrightarrow \,x \in A \cup B \cr
& \Leftrightarrow \,\,x \in A \cup C\,\,\,\left( {\because A \cup B = A \cup C} \right) \cr
& \Leftrightarrow x \in C \cr
& \therefore \,\,B = C. \cr} $$
Let $$x \in A\,\,{\text{and }}x \in B$$
$$\eqalign{
& \Leftrightarrow \,x \in A \cap B \cr
& \Leftrightarrow \,\,x \in A \cap C\,\,\,\left( {\because A \cap B = A \cap C} \right) \cr
& \Leftrightarrow x \in C \cr
& \therefore \,\,B = C. \cr} $$
103.
The range of the function $$f\left( x \right) = {}^{7 - x}{P_{x - 3}}$$ is :
A
$$\left\{ {1,\,2,\,3} \right\}$$
B
$$\left\{ {1,\,2,\,3,\,4,\,5,\,6} \right\}$$
C
$$\left\{ {1,\,2,\,3,\,4} \right\}$$
D
$$\left\{ {1,\,2,\,3,\,4,\,5} \right\}$$
Answer :
$$\left\{ {1,\,2,\,3} \right\}$$
The given function $$f\left( x \right) = {}^{7 - x}{P_{x - 3}}$$ would be defined, if
$$\eqalign{
& ({\text{i}})\,7 - x > 0\, \Rightarrow x < 7 \cr
& ({\text{ii}})\,x - 3 \geqslant 0\, \Rightarrow x \geqslant 3 \cr
& ({\text{iii}})\,\left( {x - 3} \right) \leqslant \left( {7 - x} \right) \Rightarrow 2x \leqslant 10\, \Rightarrow x \leqslant 5\, \Rightarrow x = 3,\,4,\,5, \cr
& {\text{Hence, range of }}\,f\left( x \right) = \left\{ {{}^4{P_0},\,{}^3{P_1},\,{}^2{P_2}} \right\} \cr
& {\text{Range of }}\,f\left( x \right) = \left\{ {1,\,3,\,2} \right\} \cr} $$
104.
Which one of the following is correct ?
A
$$A \cup \left( {B - C} \right) = A \cap \left( {B \cap C'} \right)$$
106.
Let $$W$$ denote the words in the English dictionary. Define the relation $$R$$ by $$R = \left\{ {\left( {x,y} \right)} \right. \in W \times W$$ the words $$x$$ and $$y$$ have at least one letter in common.} Then $$R$$ is
A
not reflexive, symmetric and transitive
B
reflexive, symmetric and not transitive
C
reflexive, symmetric and transitive
D
reflexive, not symmetric and transitive
Answer :
reflexive, symmetric and not transitive
Clearly $$(x, x)$$ $$ \in R\,\forall x \in W.$$ So $$R$$ is relexive.
Let $$(x, y)$$ $$ \in R,$$ then $$(y, x)$$ $$ \in R$$ as $$x$$ and $$y$$ have at least one letter in common. So, $$R$$ is symmetric.
But $$R$$ is not transitive for example
Let $$x$$ = INDIA, $$y$$ = BOMBAY and $$z$$ = JOKER
then $$(x, y)$$ $$ \in R$$ ($$A$$ is common) and $$(y, z)$$ $$ \in R$$ ($$O$$ is common) but $$(x, z)$$ $$ \notin R.$$ (as no letter is common)
107.
A dinner party is to be fixed for group of 100 persons. in this party, 50 persons do not prefer fish, 60 prefer chicken and 10 do not prefer either chicken or fish. The number of persons who prefer both fish and chicken is :
A
20
B
22
C
25
D
none of these
Answer :
20
Total number of persons $$ = a + b + c + n = 100$$
Do not prefer fish $$b + n = 50$$
$$60$$ prefer chicken hence $$b + c = 60$$
Do not like fish and chicken is $$n = 10$$
On solving these equations we will get $$a = 30,\,b = 40,\,c = 20$$
The number of persons who prefer both fish and chicken is $$ = c = 20$$
108.
Let $$R = \left\{ {\left( {x,\,y} \right):x,\,y\, \in \,N{\text{ and }}{x^2} - 4xy + 3{y^2} = 0} \right\},$$ where $$N$$ is the set of all natural numbers. Then the relation $$R$$ is :
A
reflexive but neither symmetric nor transitive
B
symmetric and transitive
C
reflexive and symmetric
D
reflexive and transitive
Answer :
reflexive and transitive
$$\eqalign{
& R = \left\{ {\left( {x,\,y} \right):x,\,y\, \in \,N{\text{ and }}{x^2} - 4xy + 3{y^2} = 0} \right\}, \cr
& {\text{Now, }}{x^2} - 4xy + 3{y^2} = 0\,\,\, \Rightarrow \left( {x - y} \right)\left( {x - 3y} \right) = 0 \cr
& \therefore \,x = y{\text{ or }}x = 3y \cr
& \therefore \,R = \left\{ {\left( {1,\,1} \right),\,\left( {3,\,1} \right),\,\left( {2,\,2} \right),\,\left( {6,\,2} \right),\,\left( {3,\,3} \right),\,\left( {9,\,3} \right),.....} \right\} \cr} $$
Since $$\left( {1,\,1} \right),\,\left( {2,\,2} \right),\,\left( {3,\,3} \right),.....$$ are present in the relation, therefore $$R$$ is reflexive.
Since $$\left( {3,\,1} \right)$$ is an element of $$R$$ but $$\left( {1,\,3} \right)$$ is not the element of $$R$$ is not symmetric.
$$\eqalign{
& {\text{Here }}\left( {3,\,1} \right)\, \in \,R{\text{ and }}\left( {1,\,1} \right)\, \in \,R\, \Rightarrow \left( {3,\,1} \right)\, \in \,R \cr
& \left( {6,\,2} \right)\, \in \,R{\text{ and }}\left( {2,\,2} \right)\, \in \,R\, \Rightarrow \left( {6,\,2} \right)\, \in \,R \cr
& {\text{For all such }}\left( {a,\,b} \right)\, \in \,R{\text{ and }}\left( {b,\,c} \right)\, \in \,R \Rightarrow \left( {a,\,c} \right)\, \in \,R \cr
& {\text{Hence }}R{\text{ is transitive}}{\text{.}} \cr} $$
109.
Let $$A = \left\{ {1,\,2,\,3} \right\}$$ and $$B = \left\{ {a,\,b,\,c} \right\}.$$ If $$f$$ is a function from $$A$$ to $$B$$ and $$g$$ is a one-one function from $$A$$ to $$B,$$ then the maximum number of definitions of :
A
$$f$$ is 9
B
$$g$$ is 9
C
$$f$$ is 27
D
$$g$$ is 16
Answer :
$$f$$ is 27
Number of definitions $$=$$ Number of mapping from $$A$$ to $$B = 3 \times 3 \times 3 = 27.$$
110.
The domain of the function $$f\left( x \right) = {}^{24 - x}{C_{3x - 1}} + {}^{40 - 6x}{C_{8x - 10}}$$ is :
A
$$\left\{ {2,\,3} \right\}$$
B
$$\left\{ {1,\,2,\,3} \right\}$$
C
$$\left\{ {1,\,2,\,3,\,4} \right\}$$
D
None of these
Answer :
$$\left\{ {2,\,3} \right\}$$
$$\eqalign{
& {}^{24 - x}{C_{3x - 1}}{\text{ is defined if,}} \cr
& 24 - x > 0,\,3x - 1 \geqslant 0{\text{ and }}24 - x \geqslant 3x - 1 \cr
& \Rightarrow x < 24,\,x \geqslant \frac{1}{3}{\text{ and }}x \leqslant \frac{{25}}{4} \cr
& \Rightarrow \frac{1}{3} \leqslant x \leqslant \frac{{25}}{4} \cr
& {}^{40 - 6x}{C_{8x - 10}}{\text{ is defined if,}} \cr
& 40 - 6x > 0,\,8x - 10 \geqslant 0{\text{ and }}40 - 6x \geqslant 8x - 10 \cr
& \Rightarrow x < \frac{{20}}{3},\,x \geqslant \frac{5}{4}{\text{ and }}x \leqslant \frac{{25}}{7} \cr
& \Rightarrow \frac{5}{4} \leqslant x \leqslant \frac{{25}}{7} \cr
& {\text{From (1) and (2), we get }}\frac{5}{4} \leqslant x \leqslant \frac{{25}}{7} \cr
& {\text{But }}24 - x\, \in \,N, \cr
& \therefore \,\,x{\text{ must be an integer, }}x = 2,\,3 \cr
& {\text{Hence domain }}\left( f \right) = \left\{ {2,\,3} \right\} \cr} $$