Ellipse MCQ Questions & Answers in Geometry | Maths

Learn Ellipse MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.

31. Let $$E$$ be the ellipse $$\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1$$   and $$C$$ be the circle $${x^2} + {y^2} = 9.$$   Let $$P$$ and $$Q$$ be the points $$\left( {1,\,2} \right)$$  and $$\left( {2,\,1} \right)$$  respectively. Then-

A $$Q$$ lies inside $$C$$ but outside $$E$$
B $$Q$$ lies outside both $$C$$ and $$E$$
C $$P$$ lies inside both $$C$$ and $$E$$
D $$P$$ lies inside $$C$$ but outside $$E$$
Answer :   $$P$$ lies inside $$C$$ but outside $$E$$

32. The sum of the focal distances of a point on the ellipse $$\frac{{{x^2}}}{4} + \frac{{{y^2}}}{9} = 1$$   is :

A $$4$$ units
B $$6$$ units
C $$8$$ units
D $$10$$  units
Answer :   $$4$$ units

33. If in an ellipse the minor axis $$=$$ the distance between the foci and its latus rectum $$=$$ 10 then the equation of the ellipse in the standard form is :

A $$\frac{{{x^2}}}{{{{\left( {10} \right)}^2}}} + \frac{{{y^2}}}{{{{\left( {5\sqrt 2 } \right)}^2}}} = 1$$
B $$\frac{{{x^2}}}{{{{\left( {5\sqrt 2 } \right)}^2}}} + \frac{{{y^2}}}{{{{\left( {10} \right)}^2}}} = 1$$
C $$\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{{{{\left( {\frac{5}{{\sqrt 2 }}} \right)}^2}}} = 1$$
D none of these
Answer :   $$\frac{{{x^2}}}{{{{\left( {10} \right)}^2}}} + \frac{{{y^2}}}{{{{\left( {5\sqrt 2 } \right)}^2}}} = 1$$

34. If $$p$$ is the length of the perpendicular from the focus $$S$$ of the ellipse $$\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$$    to a tangent at a point $$P$$ on the ellipse, then $$\frac{{2a}}{{SP}} - 1 = ?$$

A $$\frac{{{a^2}}}{{{p^2}}}$$
B $$\frac{{{b^2}}}{{{p^2}}}$$
C $${p^2}$$
D $$\frac{{{a^2} + {b^2}}}{{{p^2}}}$$
Answer :   $$\frac{{{b^2}}}{{{p^2}}}$$

35. In the ellipse $${x^2} + 3{y^2} = 9$$   the distance between the foci is :

A $$\sqrt 6 $$
B $$3$$
C $$\frac{2}{3}\sqrt 6 $$
D $$2\sqrt 6 $$
Answer :   $$2\sqrt 6 $$

36. The area of the quadrilateral formed by tangents at the end points of latus recta of the ellipse $$\frac{{{x^2}}}{9} + \frac{{{y^2}}}{5} = 1$$   is :

A $$\frac{{27}}{4}{\text{ uni}}{{\text{t}}^2}$$
B $$9\,{\text{uni}}{{\text{t}}^2}$$
C $$\frac{{27}}{2}{\text{ uni}}{{\text{t}}^2}$$
D $$27\,{\text{uni}}{{\text{t}}^2}$$
Answer :   $$27\,{\text{uni}}{{\text{t}}^2}$$

37. An ellipse has $$OB$$  as semi minor axis, $$F$$ and $$F'$$ its foci and the angle $$FBF'$$  is a right angle. Then the eccentricity of the ellipse is :

A $$\frac{1}{{\sqrt 2 }}$$
B $$\frac{1}{2}$$
C $$\frac{1}{4}$$
D $$\frac{1}{{\sqrt 3 }}$$
Answer :   $$\frac{1}{{\sqrt 2 }}$$

38. If a variable point $$P$$ on an ellipse of eccentricity $$e$$ is joined to the foci $${S_1}$$ and $${S_2}$$ then the incentre of the triangle $$P{S_1}{S_2}$$  lies on :

A The major axis of the ellipse
B The circle with radius $$e$$
C Another ellipse of eccentricity $$\sqrt {\frac{{3 + {e^2}}}{4}} $$
D None of these
Answer :   Another ellipse of eccentricity $$\sqrt {\frac{{3 + {e^2}}}{4}} $$

39. The slope of the diameter of the ellipse $$\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1,$$   whose length is the GM of the major and minor axes, is :

A $$\sqrt {\frac{a}{b}} $$
B $$\sqrt {ab} $$
C $$\sqrt {\frac{b}{a}} $$
D $$\frac{a}{b}$$
Answer :   $$\sqrt {\frac{b}{a}} $$

40. If $$P\left( \theta \right)$$  and $$Q\left( {\frac{\pi }{2} + \theta } \right)$$   are two points on the ellipse $$\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1,$$   then locus of the mid-point of $$PQ$$  is :

A $$\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = \frac{1}{2}$$
B $$\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 4$$
C $$\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 2$$
D None of these
Answer :   $$\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = \frac{1}{2}$$