Ellipse MCQ Questions & Answers in Geometry | Maths
Learn Ellipse MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.
61.
A focus of an ellipse is at the origin. The directrix is the line $$x=4$$ and the eccentricity is $$\frac{1}{2}.$$ Then the length of the semi-major axis is :
A
$$\frac{8}{3}$$
B
$$\frac{2}{3}$$
C
$$\frac{4}{3}$$
D
$$\frac{5}{3}$$
Answer :
$$\frac{8}{3}$$
Perpendicular distance of directrix from focus
$$\eqalign{
& = \frac{a}{e} - ae = 4 \cr
& \Rightarrow a\left( {2 - \frac{1}{2}} \right) = 4 \cr
& \Rightarrow a = \frac{8}{3} \cr} $$
$$\therefore $$ Semi major axis $$ = \frac{8}{3}$$
62.
If the tangents from the point $$\left( {\lambda ,\,3} \right)$$ to the ellipse $$\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1$$ are at right angles then $$\lambda $$ is :
A
$$ \pm 1$$
B
$$ \pm 3$$
C
$$ \pm 2$$
D
none of these
Answer :
$$ \pm 2$$
The equation of the pair of tangents is $$S{S_1} = {T^2}$$
or $$\left( {\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} - 1} \right)\left( {\frac{{{\lambda ^2}}}{9} + \frac{9}{4} - 1} \right) = {\left( {\frac{{\lambda x}}{9} + \frac{{3y}}{4} - 1} \right)^2}$$
For right angle, $$a + b = 0 \Rightarrow \left\{ {\frac{1}{9}\left( {\frac{{{\lambda ^2}}}{9} + \frac{5}{4}} \right) - \frac{{{\lambda ^2}}}{{81}}} \right\} + \left\{ {\frac{1}{4}\left( {\frac{{{\lambda ^2}}}{9} + \frac{5}{4}} \right) - \frac{9}{{16}}} \right\} = 0$$