Properties and Solutons of Triangle MCQ Questions & Answers in Trigonometry | Maths
Learn Properties and Solutons of Triangle MCQ questions & answers in Trigonometry are available for students perparing for IIT-JEE and engineering Enternace exam.
1.
In a $$\vartriangle ABC,a = 2b$$ and $$\left| {A - B} \right| = \frac{\pi }{3}.$$ The measure of $$\angle C$$ is
2.
In a $$\vartriangle ABC,\cos B \cdot \cos C + \sin B \cdot \sin C \cdot {\sin ^2}A = 1.$$ Then the triangle is
A
right-angled isosceles
B
isosceles whose equal angles are greater than $$\frac{\pi }{4}$$
C
equilateral
D
None of these
Answer :
right-angled isosceles
$$\cos B \cdot \cos C + \sin B \cdot \sin C \geqslant 1$$
because $$\sin B \cdot \sin C \cdot {\sin ^2}A$$ is positive and $${\sin ^2}A \leqslant 1$$
or, $$\cos \left( {B - C} \right) \geqslant 1.\,{\text{But}}\,\,\cos \left( {B - C} \right) > 1.\,{\text{So,}}\,\,\cos \left( {B - C} \right) = 1.$$
Therefore, $$B = C$$ and then $$\sin A = 1.$$
$$\therefore \,\,A = \frac{\pi }{2},B = C = \frac{\pi }{4}.$$
3.
In a triangle $$ABC,$$ medians $$AD$$ and $$BE$$ are drawn. If $$AD = 4,$$ $$\angle DAB = \frac{\pi }{6}$$ and $$\angle ABE = \frac{\pi }{3} ,$$ then the area of the $$\Delta \,ABC$$ is
A
$$\frac{{64}}{3}$$
B
$$\frac{{8}}{3}$$
C
$$\frac{{16}}{3}$$
D
$$\frac{{32}}{{3\sqrt 3 }}$$
Answer :
$$\frac{{32}}{{3\sqrt 3 }}$$
$$\eqalign{
& AP = \frac{2}{3}AD = \frac{8}{3};\,\,PD = \frac{4}{3};\,\,{\text{Let }}PB = x \cr
& \tan {60^ \circ } = \frac{{\frac{8}{3}}}{x}\,\,\,{\text{or }}x = \frac{8}{{3\sqrt 3 }} \cr} $$
Area of $$\Delta ABD = \frac{1}{2} \times 4 \times \frac{8}{{3\sqrt 3 }} = \frac{{16}}{{3\sqrt 3 }}$$
∴ Area of $$\Delta ABC = 2 \times \frac{{16}}{{3\sqrt 3 }} = \frac{{32}}{{3\sqrt 3 }}$$
[ $$\because $$ Median of a $$\Delta $$ divides it into two $$\Delta '{\text{s}}$$ of equal area. ]
4.
If $$BD, BE$$ and $$CF$$ are the medians of a $$\vartriangle ABC$$ then $$\left( {A{D^2} + B{E^2} + C{F^2}} \right):\left( {B{C^2} + C{A^2} + A{B^2}} \right)$$ is equal to
5.
In a triangle $$ABC,$$ let $$\angle C = \frac{\pi }{2}.$$ If $$r$$ is the inradius and $$R$$ is the circumradius of the triangle $$ABC,$$ then $$2 (r+ R)$$ equals
A
$$b + c$$
B
$$a + b$$
C
$$a + b + c$$
D
$$c + a$$
Answer :
$$a + b$$
We know by sinc rule $$\frac{c}{{\sin C}} = 2R$$
$$\eqalign{
& \Rightarrow \,\,c = 2R\sin C \cr
& \Rightarrow \,\,c = 2R\,\,\,\,\,\,\,\left( {\because \,\,\angle C = {{90}^ \circ }} \right) \cr
& {\text{Also }}\tan \frac{C}{2} = \frac{r}{{s - c}} \cr
& \Rightarrow \,\,\tan \frac{\pi }{4} = \frac{r}{{s - c}}\,\,\left( {\because \,\,\angle C = {{90}^ \circ }} \right) \cr
& \Rightarrow \,\,r = s - c = \frac{{a + b - c}}{2} \cr
& \Rightarrow \,\,2r + c = a + b \cr
& \Rightarrow \,\,2r + 2R = a + b\,\left( {{\text{using }}c = 2R} \right) \cr} $$
6.
In a $$\vartriangle ABC,A = \frac{{2\pi }}{3},b - c = 3\sqrt 3 \,cm$$ and $${\text{ar}}\left( {\vartriangle ABC} \right) = \frac{{9\sqrt 3 }}{2}\,c{m^2}.$$ Then $$a$$ is
Let us consider $$\frac{{b - c}}{a},$$ which is involved in each of the these options.
$$\eqalign{
& \frac{{b - c}}{a} = \frac{{\sin B - \sin C}}{{\sin A}} \cr
& = \frac{{2\cos \left( {\frac{{B + C}}{2}} \right)\sin \left( {\frac{{B - C}}{2}} \right)}}{{2\sin \frac{A}{2}\cos \frac{A}{2}}} \cr
& = \frac{{\sin \frac{A}{2}\sin \left( {\frac{{B - C}}{2}} \right)}}{{\sin \frac{A}{2}\cos \frac{A}{2}}} \cr
& = \frac{{\sin \left( {\frac{{B - C}}{2}} \right)}}{{\cos \frac{A}{2}}} \cr
& \therefore \,\,\left( {b - c} \right)\cos \frac{A}{2} = a\sin \left( {\frac{{B - C}}{2}} \right) \cr} $$
9.
In an equilateral triangle, 3 coins of radii 1 unit each are kept so that they touch each other and also the sides of the triangle. Area of the triangle is
A
$$4 + 2\sqrt 3 $$
B
$$6 + 4\sqrt 3 $$
C
$$12 + \frac{{7\sqrt 3 }}{4}$$
D
$$3 + \frac{{7\sqrt 3 }}{4}$$
Answer :
$$6 + 4\sqrt 3 $$
The situation is as shown in the figure. For circle with centre $${C_2},BP$$ and $$BP'$$ are two tangents from $$B$$ to circle, therefore $$B{C_2}$$ must be the $$\angle$$ bisector of $$\angle B.$$ But $$\angle B = 60°$$ $$\left( {\because \,\,\Delta ABC\,\,{\text{is an equilateral}}\,\,\Delta } \right)$$
$$\eqalign{
& \therefore \,\,\angle {C_2}BP = {30^ \circ } \cr
& \therefore \,\,\tan {30^ \circ } = \frac{1}{x} \cr
& \Rightarrow \,\,x = \sqrt 3 \cr
& \therefore \,\,BC = BP + PQ + QC \cr
& = x + 2 + x = 2 + 2\sqrt 3 \cr
& \therefore \,\,{\text{Area of }}\Delta ABC = \frac{{\sqrt 3 }}{4} \times {\left( {2 + 2\sqrt 3 } \right)^2} \cr
& = 4\sqrt 3 + 6\,\,{\text{sq}}{\text{. units}}{\text{.}} \cr} $$
10.
In a $$\vartriangle ABC,\cos A = \frac{3}{5}$$ and $$\cos B = \frac{5}{{13}}.$$ The value of $$\cos C$$ can be
A
$$\frac{7}{{13}}$$
B
$$\frac{12}{{13}}$$
C
$$\frac{33}{{65}}$$
D
None of these
Answer :
$$\frac{33}{{65}}$$
$$\tan A = \frac{4}{3}$$ and $$\tan B = \frac{12}{5}.$$ Clearly, $$\tan C$$ should be such that $$\tan A + \tan B + \tan C = \tan A\tan B\tan C$$
$$\eqalign{
& \therefore \,\,\frac{4}{3} + \frac{{12}}{5} + \tan C = \frac{4}{3} \cdot \frac{{12}}{5} \cdot \tan C\,\,\,{\text{or, }}\frac{{56}}{{15}} + \tan C = \frac{{16}}{5}\tan C \cr
& {\text{or, }}\tan C = \frac{{56}}{{33}} \cr
& \therefore \,\,\cos C = \frac{{33}}{{65}}. \cr} $$