Properties and Solutons of Triangle MCQ Questions & Answers in Trigonometry | Maths
Learn Properties and Solutons of Triangle MCQ questions & answers in Trigonometry are available for students perparing for IIT-JEE and engineering Enternace exam.
121.
In a $$\vartriangle ABC,$$ the sides $$a, b$$ and $$c$$ are such that they are the roots of $${x^3} - 11{x^2} + 38x - 40 = 0.$$ Then $$\frac{{\cos A}}{a} + \frac{{\cos B}}{b} + \frac{{\cos C}}{c}$$ is equal to
122.
$$PQR$$ is a triangular park with $$PQ = PR = 200 m.$$ A. T. V. tower stands at the mid - point of $$QR.$$ If the angles of elevation of the top of the tower at $$P, Q$$ and $$R$$ are respectively 45°, 30° and 30°, then the height of the tower (in $$m$$ ) is:
A
50
B
$$100\sqrt 3 $$
C
$$50\sqrt 2 $$
D
100
Answer :
100
Let height of tower $$MN = h$$
In $$\Delta QMN$$ we have
$$\eqalign{
& \tan {30^ \circ } = \frac{{MN}}{{QM}} \cr
& \therefore \,\,QM = \sqrt 3 \,h = MR\,\,\,.....\left( 1 \right) \cr
& {\text{Now in }}\Delta MNP \cr
& MN = PM\,\,\,\,\,\,\,.....\left( 2 \right) \cr
& {\text{In }}\Delta PMQ\,\,{\text{we have :}} \cr
& MP = \sqrt {{{\left( {200} \right)}^2} - {{\left( {\sqrt 3 \,h} \right)}^2}} \cr
& \therefore \,\,{\text{From }}\left( 2 \right),{\text{ we get :}} \cr
& \sqrt {{{\left( {200} \right)}^2} - {{\left( {\sqrt 3 \,h} \right)}^2}} = h \cr
& \Rightarrow \,\,h = 100\,m \cr} $$
123.
In a $$\vartriangle ABC,$$ the sides are in the ratio 4 : 5 : 6. The ratio of the circumradius and the inradius is
124.
In a triangle $$ABC,$$ angle $$A$$ is greater than angle $$B.$$ If the measures of angles $$A$$ and $$B$$ satisfy the equation $$3\sin x - 4{\sin ^3}x - k = 0, 0 < k < 1,$$ then the measure of angle $$C$$ is
A
$$\frac{\pi }{3}$$
B
$$\frac{\pi }{2}$$
C
$$\frac{2\pi }{3}$$
D
$$\frac{5\pi }{6}$$
Answer :
$$\frac{2\pi }{3}$$
$$\eqalign{
& {\text{Given that}}\,{\text{ }}A > B \cr
& {\text{and }}3\sin x - 4{\sin ^3}x - k = 0,\,\,\,\,\,\,0 < k < 1 \cr
& \Rightarrow \,\,\sin \,3x = k \cr} $$
As $$A$$ and $$B$$ satisfy above eq. (given)
$$\eqalign{
& \therefore \,\,\sin \,3A\, = k,\,\,\sin \,3B = k \cr
& \Rightarrow \,\sin \,3A - \sin \,3B = 0 \cr
& \Rightarrow \,\,2\,\cos \,\frac{{3A + 3B}}{2}\sin \,\frac{{3A - 3B}}{2} = 0 \cr
& \Rightarrow \,\,\cos \left( {\frac{{3A + 3B}}{2}} \right) = 0\,\,{\text{or }}\sin \left( {\frac{{3A - 3B}}{2}} \right) = 0 \cr
& \Rightarrow \,\,\frac{{3A + 3B}}{2} = {90^ \circ }\,\,{\text{or }}\frac{{3A - 3B}}{2} = 0 \cr
& \Rightarrow \,\,A + B = {60^ \circ }\,\,{\text{or }}A = B \cr} $$
But given that $$A > B,\,\,\therefore \,\,A \ne B$$
Thus, $$A + B = 60°$$
But $$A + B + C = 180°$$
⇒ $$C = 180° - 60° = 120°$$
∴ $$C = \frac{{2\pi }}{3}$$
125.
Angles of a triangle are in the ratio $$4 : 1 : 1.$$ The ratio between its greatest side and perimeter is
A
$$\frac{3}{{2 + \sqrt 3 }}$$
B
$$\frac{1}{{2 + \sqrt 3 }}$$
C
$$\frac{\sqrt 3}{{\sqrt 3 + 2 }}$$
D
$$\frac{2}{{2 + \sqrt 3 }}$$
Answer :
$$\frac{\sqrt 3}{{\sqrt 3 + 2 }}$$
Consider a triangle $$ABC.$$
Given, angles of a triangle are in the ratio $$4 : 1 : 1.$$
Angles are $$4x, x$$ and $$x.$$
$${\text{i}}{\text{.e}}{\text{., }}\angle A = 4x,\angle B = x,\angle C = x$$
Now, by angle sum property of $$\Delta ,$$ we have
$$\eqalign{
& \angle A + \angle B + \angle C = {180^ \circ } \cr
& \Rightarrow 4x + x + x = {180^ \circ } \cr
& \Rightarrow x = \frac{{{{180}^ \circ }}}{6} = {30^ \circ } \cr
& \therefore \angle A = {120^ \circ },\angle B = {30^ \circ },\angle C = {30^ \circ } \cr} $$
We know, ratio of sides of $$\Delta \,ABC$$ is given by
$$\eqalign{
& \sin A:\sin B:\sin C = \sin {120^ \circ }:\sin {30^ \circ }:\sin {30^ \circ } \cr
& = \frac{{\sqrt 3 }}{2}:\frac{1}{2}:\frac{1}{2} = \sqrt 3 :1:1 \cr} $$
Required ration $$ = \frac{{\sqrt 3 }}{{1 + 1 + \sqrt 3 }} = \frac{{\sqrt 3 }}{{2 + \sqrt 3 }}.$$
126.
A tower stands at the centre of a circular park. $$A$$ and $$B$$ are two points on the boundary of the park such that $$AB (= a)$$ subtends an angle of 60° at the foot of the tower, and the angle of elevation of the top of the tower from $$A$$ or $$B$$ is 30°. The height of the tower is
A
$$\frac{a}{{\sqrt 3 }}$$
B
$$a\sqrt 3 $$
C
$$\frac{2a}{{\sqrt 3 }}$$
D
$$2a\sqrt 3 $$
Answer :
$$\frac{a}{{\sqrt 3 }}$$
In the $$\Delta \,AOB,\angle \,AOB = {60^ \circ },$$ $$\angle \,OBA = \angle \,OAB$$ (since $$OA = OB = AB$$ radius of same circle).
∴ $$\Delta \,AOB$$ is a equilateral triangle. Let the height of tower is $$h$$
$$m,$$ Given distance between two points $$A$$ & $$B$$ lie on boundary of circular park, subtends an angle of 60° at the foot of the tower is $$AB$$ i.e. $$AB = a. A$$ tower $$OC$$ stands at the centre of a circular park. Angle of elevation of the top of the tower from $$A$$ and $$B$$ is 30°.
In $$\Delta \,OAC$$
$$\eqalign{
& \tan {30^ \circ } = \frac{h}{a} \cr
& \Rightarrow \,\,\frac{1}{{\sqrt 3 }} = \frac{h}{a} \cr
& \Rightarrow \,\,h = \frac{a}{{\sqrt 3 }} \cr} $$
127.
If in a $$\vartriangle ABC,{a^2}{\cos ^2}A = {b^2} + {c^2}$$ then
128.
In a $$\vartriangle ABC,$$ the inradius and three exradii are $$r,{r_1},{r_2}$$ and $${r_3}$$ respectively. In usual notations the value of $$r \cdot {r_1} \cdot {r_2} \cdot {r_3}$$ is equal to
129.
In a triangle $$ABC,$$ $$\angle B = \frac{\pi }{3}{\text{ and }}\angle C = \frac{\pi }{4}.$$ Let $$D$$ divide $$BC$$ internally in the ratio 1 : 3 then $$\frac{{\sin \angle BAD}}{{\sin \angle CAD}}$$ is equal to
A
$$\frac{1}{{\sqrt 6 }}$$
B
$${\frac{1}{3}}$$
C
$$\frac{1}{{\sqrt 3 }}$$
D
$$\sqrt {\frac{2}{3}} $$
Answer :
$$\frac{1}{{\sqrt 6 }}$$
In $$\Delta ABD,$$ applying Sine law, we get
$$\eqalign{
& \frac{{AD}}{{\sin \frac{\pi }{3}}} = \frac{x}{{\sin \alpha }} \cr
& \Rightarrow \,\,AD = \frac{{\sqrt 3 x}}{{2\sin \alpha }}\,\,\,\,\,.....\left( 1 \right) \cr} $$
In $$\Delta ACD,$$ applying Sine law, we get
$$\eqalign{
& \frac{{AD}}{{\sin \frac{\pi }{4}}} = \frac{{3x}}{{\sin \beta }} \cr
& \Rightarrow \,\,AD = \frac{{3x}}{{\sqrt 2 \sin \beta }}\,\,\,\,\,.....\left( 2 \right) \cr} $$
From (i) and (ii) $$\frac{{\sqrt 3 x}}{{2\sin \alpha }} = \frac{{3x}}{{\sqrt 2 \sin \beta }}$$
$$ \Rightarrow \,\,\frac{{\sin \alpha }}{{\sin \beta }} = \frac{1}{{\sqrt 6 }}$$
130.
In a $$\vartriangle ABC,B = \frac{\pi }{8}$$ and $$C = \frac{{5\pi }}{8}.$$ The altitude from $$A$$ to the side $$BC$$ is