Properties and Solutons of Triangle MCQ Questions & Answers in Trigonometry | Maths

Learn Properties and Solutons of Triangle MCQ questions & answers in Trigonometry are available for students perparing for IIT-JEE and engineering Enternace exam.

41. In a $$\vartriangle ABC,$$  $$I$$ is the incentre. The ratio $$IA : IB : IC$$   is equal to

A $${\text{cosec}}\frac{A}{2}:{\text{cosec}}\frac{B}{2}:{\text{cosec}}\frac{C}{2}$$
B $$\sin \frac{A}{2}:\sin \frac{B}{2}:\sin \frac{C}{2}$$
C $$\sec \frac{A}{2}:\sec \frac{B}{2}:\sec \frac{C}{2}$$
D None of these
Answer :   $${\text{cosec}}\frac{A}{2}:{\text{cosec}}\frac{B}{2}:{\text{cosec}}\frac{C}{2}$$

42. From the top of a cliff $$50\,m$$  high, the angles of depression of the top and bottom of a tower are observed to be $${30^ \circ }$$ and $${45^ \circ }.$$ The height of tower is

A $$50\,m$$
B $$50\sqrt 3 \,m$$
C $$50\left( {\sqrt 3 - 1} \right)m$$
D $$50\left( {1 - \frac{{\sqrt 3 }}{3}} \right)m$$
Answer :   $$50\left( {1 - \frac{{\sqrt 3 }}{3}} \right)m$$

43. Let $${A_0},{A_1},{A_2},{A_3},{A_4}$$    and $${A_5}$$ be the consecutive vertices of a regular hexagon inscribed in a unit circle. The product of the lengths of $${A_0}{A_1},{A_0}{A_2}$$   and $${A_0}{A_4}$$  is

A $$\frac{3}{4}$$
B $${3\sqrt 3 }$$
C $$3$$
D $$\frac{{3\sqrt 3 }}{2}$$
Answer :   $$3$$

44. In a $$\vartriangle ABC,\left( {c + a + b} \right)\left( {a + b - c} \right) = ab.$$       The measure of $$\angle C$$ is

A $$\frac{\pi }{3}$$
B $$\frac{\pi }{6}$$
C $$\frac{2\pi }{3}$$
D None of these
Answer :   $$\frac{2\pi }{3}$$

45. In a $$\vartriangle ABC,\cos A + \cos B + \cos C > 1$$       only if the triangle is

A acute angled
B obtuse angled
C right angled
D the nature of the triangle cannot be determined
Answer :   the nature of the triangle cannot be determined

46. The number of possible triangles $$ABC$$  in which $$BC = \sqrt {11} \,cm,CA = \sqrt {13} \,cm$$      and $$A = {60^ \circ }$$  is

A 0
B 1
C 2
D None of these
Answer :   2

47. The horizontal distance between two towers is 60 metres and the angular depression of the top of the first tower as seen from the top of the second. is $${30^ \circ }.$$ If the height of the second tower be 150 metres, then the height of the first tower is

A $$150 - 60\sqrt 3 \,m$$
B $$90\,m$$
C $$150 - 20\sqrt 3 \,m$$
D None of these
Answer :   $$150 - 20\sqrt 3 \,m$$

48. In a $$\vartriangle ABC,2s = $$   perimeter and $$R =$$  circumradius. Then $$\frac{s}{R}$$ is equal to

A $$\sin A + \sin B + \sin C$$
B $$\cos A + \cos B + \cos C$$
C $$\sin \frac{A}{2} + \sin \frac{B}{2} + \sin \frac{C}{2}$$
D None of these
Answer :   $$\sin A + \sin B + \sin C$$

49. In a triangle the sum of two sides is $$x$$ and the product of the same sides is $$y.$$ If $${x^2} - {c^2} = y,$$   where $$c$$ is the third side of the triangle, then the ratio of the in radius to the circum-radius of the triangle is

A $$\frac{{3y}}{{2x\left( {x + c} \right)}}$$
B $$\frac{{3y}}{{2c\left( {x + c} \right)}}$$
C $$\frac{{3y}}{{4x\left( {x + c} \right)}}$$
D $$\frac{{3y}}{{4c\left( {x + c} \right)}}$$
Answer :   $$\frac{{3y}}{{2c\left( {x + c} \right)}}$$

50. If in a $$\vartriangle ABC,2\cos A\sin C = \sin B$$      then the triangle is

A equilateral
B isosceles
C right angled
D None of these
Answer :   isosceles