When stone is at its lowest position, it has only kinetic energy, given by $$K = \frac{1}{2}m{u^2}$$

At the horizontal position, it has energy $$E = U + K = \frac{1}{2}m{{u'}^2} + mgl$$
According to conservation of mechanical energy, $$K = E$$

$$\eqalign{
& \therefore \frac{1}{2}m{u^2} = \frac{1}{2}m{{u'}^2} + mgl \cr
& {\text{or}}\,\,\frac{1}{2}m{{u'}^2} = \frac{1}{2}m{u^2} - mgl \cr
& {\text{or}}\,\,{{u'}^2} = {u^2} - 2gl \cr
& {\text{or}}\,\,u' = \sqrt {{u^2} - 2gl} \,......\left( {\text{i}} \right) \cr} $$
So, the magnitude of change in velocity
$$\eqalign{
& \left| {\Delta u} \right| = \left| {u' - u} \right| \cr
& = \sqrt {{{u'}^2} + {u^2} + 2u'u\cos {{90}^ \circ }} \cr} $$

$$\eqalign{
& \left| {\Delta u} \right| = \sqrt {{{u'}^2} + {u^2}} \cr
& = \sqrt {2\left( {{u^2} - gl} \right)} \,\,\left[ {{\text{from}}\,{\text{Eq}}{\text{.}}\left( {\text{i}} \right)} \right] \cr} $$