174.
If f: $$R \to R$$ is a twice differentiable function such that $$f''\left( x \right) > 0$$ for all $$x \in R,$$ and $$f\,f\left( {\frac{1}{2}} \right) = \frac{1}{2},f\left( 1 \right) = 1,$$ then
A
$$f'\left( 1 \right) \leqslant 0$$
B
$$0 < f'\left( 1 \right) \leqslant \frac{1}{2}$$
C
$$\frac{1}{2} < f'\left( 1 \right) \leqslant 1$$
D
$$f'\left( 1 \right) > 1$$
Answer :
$$f'\left( 1 \right) > 1$$
$$\eqalign{
& f''\left( x \right) > 0,\forall x \in R \cr
& f\left( {\frac{1}{2}} \right) = \frac{1}{2},f\left( 1 \right) = 1 \cr} $$
∴ $$f'$$ is an increasing function on $$R.$$
By Lagrange's Mean Value theorem.
$$\eqalign{
& f'\left( \alpha \right) = \frac{{f\left( 1 \right) - f\left( {\frac{1}{2}} \right)}}{{1 - \frac{1}{2}}},\alpha \in \left( {\frac{1}{2},1} \right) \cr
& \Rightarrow f'\left( \alpha \right) = 1\,{\text{for}}\,{\text{some}}\,\alpha \in \left( {\frac{1}{2},1} \right) \cr
& \Rightarrow f'\left( 1 \right) > 1 \cr} $$
175.
The maximum value of $$f\left( x \right) = 3{\cos ^2}x + 4{\sin ^2}x + \cos \frac{x}{2} + \sin \frac{x}{2}$$ is :
176.
A value of $$c$$ for which conclusion of Mean Value Theorem holds for the function $$f\left( x \right) = {\log _e}x$$ on the interval [1, 3] is
A
$${\log _3}e$$
B
$${\log _e}3$$
C
$$2{\log _3}e$$
D
$$\frac{1}{2}{\log _3}e$$
Answer :
$$2{\log _3}e$$
Using Lagrange's Mean Value Theorem
Let $$f\left( x \right)$$ be a function defined on $$[a,b]$$
$$\eqalign{
& {\text{then}}\,f'\left( c \right) = \frac{{f\left( b \right) - f\left( a \right)}}{{b - a}}\,......\left( {\text{i}} \right) \cr
& c \in \left[ {a,b} \right] \cr
& \therefore {\text{Given }}f\left( x \right) = {\log _e}x\therefore f'\left( x \right) = \frac{1}{x} \cr
& \therefore {\text{equation}}\,\left( {\text{i}} \right)\,{\text{become }}\frac{1}{c} = \frac{{f\left( 3 \right) - f\left( 1 \right)}}{{3 - 1}} \cr
& \Rightarrow \frac{1}{c} = \frac{{{{\log }_e}3 - {{\log }_e}1}}{2} = \frac{{{{\log }_e}3}}{2} \cr
& \Rightarrow c = \frac{2}{{{{\log }_e}3}} \Rightarrow c = 2{\log _3}e \cr} $$
177.
Two cyclists start from the junction of two perpendicular roads, their velocities being $$3\,v\,m/minute$$ and $$4\,v\,m/minute.$$ The rate at which the two cyclists are separating is :
A
$$\frac{7}{2}\,v\,m/minute$$
B
$$5\,v\,m/minute$$
C
$$v\,m/minute$$
D
None of these
Answer :
$$5\,v\,m/minute$$
At time $$t,$$ the distance $$z$$ between the cyclists is given by $${z^2} = {\left( {3vt} \right)^2} + {\left( {4vt} \right)^2}$$
$$\therefore \,z = 5vt \Rightarrow \frac{{dz}}{{dt}} = 5v$$
178.
If the line joining the points $$\left( {0,\,3} \right)$$ and $$\left( {5,\, - 2} \right)$$ is a tangent to the curve $$y = \frac{c}{{x + 1}}$$ then the value of $$c$$ is :
179.
The normal to the curve $$x = a\left( {\cos \theta+\theta \sin \theta } \right),\,y = a\left( {\sin \theta -\theta \cos \theta } \right)$$ at any point $$'\theta '$$ is such that
A
it passes through the origin
B
it makes an angle $$\frac{\pi }{2} + \theta $$ with the $$x - $$axis
C
it passes through $$\left( {a\frac{\pi }{2}, - a} \right)$$
D
it is at a constant distance from the origin
Answer :
it is at a constant distance from the origin
180.
If an equation of a tangent to the curve, $$y = \cos \left( {x + y} \right),\, - 1 \leqslant x \leqslant 1 + \pi ,$$ is $$x + 2y = k$$ then $$k$$ is equal to :
A
$$1$$
B
$$2$$
C
$$\frac{\pi }{4}$$
D
$$\frac{\pi }{2}$$
Answer :
$$\frac{\pi }{2}$$
Let $$y = \cos \left( {x + y} \right)$$
$$ \Rightarrow \frac{{dy}}{{dx}} = - \sin \left( {x + y} \right)\left( {1 + \frac{{dy}}{{dx}}} \right)......\left( 1 \right)$$
Now, given equation of tangent is $$x + 2y = k$$
$$\eqalign{
& \Rightarrow {\text{Slope}} = \frac{{ - 1}}{2} \cr
& {\text{So, }}\frac{{dy}}{{dx}} = \frac{{ - 1}}{2}\,{\text{put this value in equation}}\left( 1 \right),{\text{ we get}} \cr
& \frac{{ - 1}}{2} = - \sin \left( {x + y} \right)\left( {1 - \frac{1}{2}} \right) \cr
& \Rightarrow \sin \left( {x + y} \right) = 1 \cr
& \Rightarrow x + y = \frac{\pi }{2} \cr
& \Rightarrow y = \frac{\pi }{2} - x \cr
& {\text{Now, }}\frac{\pi }{2} - x = \cos \left( {x + y} \right) \cr
& \Rightarrow x = \frac{\pi }{2}{\text{ and }}y = 0 \cr
& {\text{Thus }}x + 2y = k \Rightarrow \frac{\pi }{2} = k \cr} $$