Application of Derivatives MCQ Questions & Answers in Calculus | Maths

Learn Application of Derivatives MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

181. If $$f\left( x \right) = \frac{x}{{\sin \,x}}$$   and $$g\left( x \right) = \frac{x}{{\tan \,x}},$$    where $$0 < x \leqslant 1,$$   then in the interval :

A both $$f\left( x \right)$$  and $$g\left( x \right)$$  are increasing functions
B both $$f\left( x \right)$$  and $$g\left( x \right)$$  are decreasing functions
C $$f\left( x \right)$$  is an increasing function
D $$g\left( x \right)$$  is an increasing function
Answer :   $$f\left( x \right)$$  is an increasing function

182. Tangent is drawn to ellipse
$$\frac{{{x^2}}}{{27}} + {y^2} = 1$$   at $$\left( {3\sqrt 3 \cos \theta ,\sin \theta } \right)$$    (where $$\theta \in \left( {0,\frac{\pi }{2}} \right)$$  ).
Then the value of $$\theta $$ such that sum of intercepts on axes made by this tangent is minimum, is

A $$\frac{\pi }{3}$$
B $$\frac{\pi }{6}$$
C $$\frac{\pi }{8}$$
D $$\frac{\pi }{4}$$
Answer :   $$\frac{\pi }{8}$$

183. The maximum volume (in $$cu.m$$  ) of the right circular cone having slant height $$3\,m$$  is:

A $$6\pi $$
B $$3\sqrt 3 \pi $$
C $$\frac{4}{3}\pi $$
D $$2\sqrt 3 \pi $$
Answer :   $$2\sqrt 3 \pi $$

184. If at any instant $$t,$$ for a sphere, $$r$$ denotes the radius, $$S$$ denotes the surface area and $$V$$ denotes the volume, then what is $$\frac{{dV}}{{dt}}$$  equal to ?

A $$\frac{1}{2}S\frac{{dr}}{{dt}}$$
B $$\frac{1}{2}r\frac{{dS}}{{dt}}$$
C $$r\frac{{dS}}{{dt}}$$
D $$\frac{1}{2}{r^2}\frac{{dS}}{{dt}}$$
Answer :   $$\frac{1}{2}r\frac{{dS}}{{dt}}$$

185. If $$4a + 2b + c = 0$$    then the equation $$3a{x^2} + 2bx + c = 0$$     has at least one real root lying between :

A 0 and 1
B 1 and 2
C 0 and 2
D none of these
Answer :   0 and 2

186. A curve is represented by the equation $$x = {\sec ^2}t$$   and $$y = \cot \,t,$$   where $$t$$ is a parameter. If the tangent at the point $$P$$ on the curve where $$t = \frac{\pi }{4}$$  meets the curve again at the point $$Q,$$ then $$|PQ|$$  is equal to :

A $$\frac{{5\sqrt 3 }}{2}$$
B $$\frac{{5\sqrt 5 }}{2}$$
C $$\frac{{2\sqrt 5 }}{3}$$
D $$\frac{{3\sqrt 5 }}{2}$$
Answer :   $$\frac{{3\sqrt 5 }}{2}$$

187. The equation of a curve is given by $$x = {e^t}\sin \,t,\,y = {e^t}\cos \,t.$$      The inclination of the tangent to the curve at the point $$t = \frac{\pi }{4}$$  is :

A $$\frac{\pi }{4}$$
B $$\frac{\pi }{3}$$
C $$\frac{\pi }{2}$$
D 0
Answer :   0

188. The curve given by $$x + y = {e^{xy}}$$   has a tangent parallel to the $$y$$-axis at the point :

A (0, 1)
B (1, 0)
C (1, 1)
D none of these
Answer :   (1, 0)

189. Let $$S$$ be the set of all values of $$x$$ for which the tangent to the curve $$y = f\left( x \right) = {x^3} - {x^2} - 2x$$      at $$\left( {x,y} \right)$$  is parallel to the line segment joining the points $$\left( {1,f\left( a \right)} \right)$$  and $$\left( { - 1,f\left( { - 1} \right)} \right),$$   then $$S$$ is equal to:

A $$\left\{ {\frac{1}{3},1} \right\}$$
B $$\left\{ { - \frac{1}{3}, - 1} \right\}$$
C $$\left\{ {\frac{1}{3}, - 1} \right\}$$
D $$\left\{ { - \frac{1}{3},1} \right\}$$
Answer :   $$\left\{ { - \frac{1}{3},1} \right\}$$

190. The value of $$c$$ in Lagrange’s theorem for the function $$\left| x \right|$$ in the interval $$\left[ { - 1,\,1} \right]$$  is :

A 0
B $$\frac{1}{2}$$
C $$ - \frac{1}{2}$$
D nonexistent in the interval
Answer :   nonexistent in the interval