Application of Derivatives MCQ Questions & Answers in Calculus | Maths

Learn Application of Derivatives MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

221. Let $${f\left( x \right)}$$  be a polynomial of degree four having extreme values at $$x = 1$$  and $$x = 2.$$  If $$\mathop {\lim }\limits_{x \to 0} \left[ {1 + \frac{{f\left( x \right)}}{{{x^2}}}} \right] = 3,$$     then $$f\left( 2 \right)$$  is equal to:

A 0
B 4
C - 8
D - 4
Answer :   0

222. If $$y = a\ln x + b{x^2} + x$$     has its extremum values at $$x = - 1$$  and $$x = 2,$$  then

A $$a = 2,b = - 1$$
B $$a = 2,b = - \frac{1}{2}$$
C $$a = - 2,b = \frac{1}{2}$$
D none of these
Answer :   $$a = 2,b = - \frac{1}{2}$$

223. A spherical balloon is filled with 4500$$\pi $$ cubic meters of helium gas. If a leak in the balloon causes the gas to escape at the rate of 72$$\pi $$ cubic meters per minute, then the rate (in meters per minute) at which the radius of the balloon decreases 49 minutes after the leakage began is :

A $$\frac{9}{7}$$
B $$\frac{7}{9}$$
C $$\frac{2}{9}$$
D $$\frac{9}{2}$$
Answer :   $$\frac{2}{9}$$

224. Let $$f:R \to R$$   be a function such that $$f\left( x \right) = ax + 3\sin \,x + 4\cos \,x.$$       Then $$f\left( x \right)$$  is invertible if :

A $$a\, \in \,\left( { - 5,\,5} \right)$$
B $$a\, \in \,\left( { - \infty ,\, - 5} \right)$$
C $$a\, \in \,\left( {5,\, + \infty } \right)$$
D none of these
Answer :   $$a\, \in \,\left( { - 5,\,5} \right)$$

225. If $$f\left( x \right) = x{e^{x\left( {1 - x} \right)}},$$     then $$f\left( x \right)$$  is

A increasing on $$\left[ { - \frac{1}{2},1} \right]$$
B decreasing on $$R$$
C increasing on $$R$$
D decreasing on $$\left[ { - \frac{1}{2},1} \right]$$
Answer :   increasing on $$\left[ { - \frac{1}{2},1} \right]$$

226. The equation $$\sin \,x + x\cos \,x = 0$$     has at least one root in the interval :

A $$\left( { - \frac{\pi }{2},\,0} \right)$$
B $$\left( {0,\,\pi } \right)$$
C $$\left( { - \frac{\pi }{2},\,\frac{\pi }{2}} \right)$$
D none of these
Answer :   $$\left( {0,\,\pi } \right)$$