Indefinite Integration MCQ Questions & Answers in Calculus | Maths

Learn Indefinite Integration MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

21. Solve this : $$\int {\frac{{{x^{n - 1}}}}{{{x^{2n}} + {a^2}}}dx = ?} $$

A $$\frac{1}{{na}}{\tan ^{ - 1}}\left( {\frac{{{x^n}}}{a}} \right) + C$$
B $$\frac{n}{a}{\tan ^{ - 1}}\left( {\frac{{{x^n}}}{a}} \right) + C$$
C $$\frac{n}{a}{\sin ^{ - 1}}\left( {\frac{{{x^n}}}{a}} \right) + C$$
D $$\frac{n}{a}{\cos ^{ - 1}}\left( {\frac{{{x^n}}}{a}} \right) + C$$
Answer :   $$\frac{1}{{na}}{\tan ^{ - 1}}\left( {\frac{{{x^n}}}{a}} \right) + C$$

22. $$\int {{{\left\{ {\frac{{\left( {\log \,x - 1} \right)}}{{1 + {{\left( {\log \,x} \right)}^2}}}} \right\}}^2}dx} $$     is equal to-

A $$\frac{{\log \,x}}{{{{\left( {\log \,x} \right)}^2} + 1}} + C$$
B $$\frac{x}{{{x^2} + 1}} + C$$
C $$\frac{{x{e^x}}}{{1 + {x^2}}} + C$$
D $$\frac{x}{{{{\left( {\log \,x} \right)}^2} + 1}} + C$$
Answer :   $$\frac{x}{{{{\left( {\log \,x} \right)}^2} + 1}} + C$$

23. $$\int {\frac{{\left( {{x^2} - 1} \right)}}{{x\sqrt {{x^4} + 3{x^2} + 1} }}} dx$$     is equal to :

A $$\log \left| {x + \frac{1}{x} + \sqrt {{x^2} + \frac{1}{{{x^2}}} + 3} } \right| + C$$
B $$\log \left| {x - \frac{1}{x} + \sqrt {{x^2} + \frac{1}{{{x^2}}} - 3} } \right| + C$$
C $$\log \left| {x + \sqrt {{x^2} + 3} } \right| + C$$
D None of these
Answer :   $$\log \left| {x + \frac{1}{x} + \sqrt {{x^2} + \frac{1}{{{x^2}}} + 3} } \right| + C$$

24. The integral $$\int {\frac{{{{\sec }^2}x}}{{{{\left( {\sec \,x + \tan \,x} \right)}^{\frac{9}{2}}}}}dx} ,$$     equals (for some arbitrary constant $$K$$ )

A $$ - \frac{1}{{{{\left( {\sec \,x + \tan \,x} \right)}^{\frac{{11}}{2}}}}}\left\{ {\frac{1}{{11}} - \frac{1}{7}{{\left( {\sec \,x + \tan \,x} \right)}^2}} \right\} + K$$
B $$\frac{1}{{{{\left( {\sec \,x + \tan \,x} \right)}^{\frac{{11}}{2}}}}}\left\{ {\frac{1}{{11}} - \frac{1}{7}{{\left( {\sec \,x + \tan \,x} \right)}^2}} \right\} + K$$
C $$ - \frac{1}{{{{\left( {\sec \,x + \tan \,x} \right)}^{\frac{{11}}{2}}}}}\left\{ {\frac{1}{{11}} + \frac{1}{7}{{\left( {\sec \,x + \tan \,x} \right)}^2}} \right\} + K$$
D $$\frac{1}{{{{\left( {\sec \,x + \tan \,x} \right)}^{\frac{{11}}{2}}}}}\left\{ {\frac{1}{{11}} + \frac{1}{7}{{\left( {\sec \,x + \tan \,x} \right)}^2}} \right\} + K$$
Answer :   $$ - \frac{1}{{{{\left( {\sec \,x + \tan \,x} \right)}^{\frac{{11}}{2}}}}}\left\{ {\frac{1}{{11}} + \frac{1}{7}{{\left( {\sec \,x + \tan \,x} \right)}^2}} \right\} + K$$

25. $$\int {\frac{{{x^{\frac{5}{2}}}}}{{\sqrt {1 + {x^7}} }}dx} $$    is :

A $$\frac{2}{7}\log \left( {{x^{\frac{7}{2}}} + \sqrt {{x^7} + 1} } \right) + c$$
B $$\frac{1}{2}\log \frac{{{x^7} + 1}}{{{x^7} - 1}} + c$$
C $$2\sqrt {1 + {x^7}} + c$$
D none of these
Answer :   $$\frac{2}{7}\log \left( {{x^{\frac{7}{2}}} + \sqrt {{x^7} + 1} } \right) + c$$

26. What is $$\int {{e^{\ln \,x}}\sin \,x\,dx} $$     equal to ?
Where $$'c’$$ is a constant of integration.

A $${e^{\ln \,x}}\left( {\sin \,x - \cos \,x} \right) + c$$
B $$\left( {\sin \,x - x\,\cos \,x} \right) + c$$
C $$\left( {x\,\sin \,x + \cos \,x} \right) + c$$
D $$\left( {\sin \,x + x\,\cos \,x} \right) - c$$
Answer :   $$\left( {\sin \,x - x\,\cos \,x} \right) + c$$

27. $$\int {{e^{3\,\log \,x}}{{\left( {{x^4} + 1} \right)}^{ - 1}}dx} $$     is equal to :

A $$\log \left( {{x^4} + 1} \right) + C$$
B $$\frac{1}{4}\log \left( {{x^4} + 1} \right) + C$$
C $$ - \log \left( {{x^4} + 1} \right) + C$$
D None of these
Answer :   $$\frac{1}{4}\log \left( {{x^4} + 1} \right) + C$$

28. Evaluate : $$\int {\frac{1}{{1 + 3\,{{\sin }^2}x + 8\,{{\cos }^2}x}}} dx$$

A $$\frac{1}{6}{\tan ^{ - 1}}\left( {2\,\tan \,x} \right) + C$$
B $${\tan ^{ - 1}}\left( {2\,\tan \,x} \right) + C$$
C $$\frac{1}{6}{\tan ^{ - 1}}\left( {\frac{{2\,\tan \,x}}{3}} \right) + C$$
D none of these
Answer :   $$\frac{1}{6}{\tan ^{ - 1}}\left( {\frac{{2\,\tan \,x}}{3}} \right) + C$$

29. The value of $$\sqrt 2 \int {\frac{{\sin \,xdx}}{{\sin \left( {x - \frac{\pi }{4}} \right)}}} $$    is-

A $$x + \log \left| {\cos \left( {x - \frac{\pi }{4}} \right)} \right| + c$$
B $$x - \log \left| {\sin\left( {x - \frac{\pi }{4}} \right)} \right| + c$$
C $$x + \log \left| {\sin\left( {x - \frac{\pi }{4}} \right)} \right| + c$$
D $$x - \log \left| {\cos \left( {x - \frac{\pi }{4}} \right)} \right| + c$$
Answer :   $$x + \log \left| {\sin\left( {x - \frac{\pi }{4}} \right)} \right| + c$$

30. The value of $$\int {{e^{{{\tan }^{ - 1}}x}}\frac{{\left( {1 + x + {x^2}} \right)}}{{1 + {x^2}}}} dx$$      is :

A $$x{e^{{{\tan }^{ - 1}}}}x + c$$
B $${\tan ^{ - 1}}x + C$$
C $${e^{{{\tan }^{ - 1}}x}} + 2x + C$$
D none of these
Answer :   $$x{e^{{{\tan }^{ - 1}}}}x + c$$