Indefinite Integration MCQ Questions & Answers in Calculus | Maths

Learn Indefinite Integration MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

41. If $$\phi \left( x \right) = \int {{{\cot }^4}x\,dx} + \frac{1}{3}{\cot ^3}x - \cot \,x$$        and $$\phi \left( {\frac{\pi }{2}} \right) = \frac{\pi }{2}$$   then $$\phi \left( x \right)$$  is :

A $$\pi - x$$
B $$x - \pi $$
C $$\frac{\pi }{2} - x$$
D $$x$$
Answer :   $$x$$

42. The antiderivative of $$\frac{{{2^x}}}{{\sqrt {1 - {4^x}} }}$$   w.r.t. $$x$$ is :

A $${\log _2}e.{\sin ^{ - 1}}\left( {{2^x}} \right) + k$$
B $${\sin ^{ - 1}}\left( {{2^x}} \right) + k$$
C $${\cos ^{ - 1}}\left( {{2^x}} \right).\frac{1}{{{{\log }_e}2}} + k$$
D none of these
Answer :   $${\log _2}e.{\sin ^{ - 1}}\left( {{2^x}} \right) + k$$

43. $$\int {{e^{ - x}}\left( {1 - \tan \,x} \right)\sec \,x\,dx} $$      is equal to :

A $${e^{ - x}}\sec \,x + c$$
B $${e^{ - x}}\tan \,x + c$$
C $$ - {e^{ - x}}\tan \,x + c$$
D none of these
Answer :   none of these

44. $$I = \int {\left\{ {{{\log }_e}{{\log }_e}x + \frac{1}{{{{\left( {{{\log }_e}x} \right)}^2}}}} \right\}} dx$$       is equal to :

A $$x\,{\log _e}{\log _e}x + c$$
B $$x\,{\log _e}{\log _e}x - \frac{x}{{{{\log }_e}x}} + c$$
C $$x\,{\log _e}{\log _e}x + \frac{x}{{{{\log }_e}x}} + c$$
D none of these
Answer :   $$x\,{\log _e}{\log _e}x - \frac{x}{{{{\log }_e}x}} + c$$

45. The integral $$\int {\frac{{dx}}{{{x^2}{{\left( {{x^4} + 1} \right)}^{\frac{3}{4}}}}}} $$   equals :

A $$ - {\left( {{x^4} + 1} \right)^{\frac{1}{4}}} + c$$
B $$ - {\left( {\frac{{{x^4} + 1}}{{{x^4}}}} \right)^{\frac{1}{4}}} + c$$
C $${\left( {\frac{{{x^4} + 1}}{{{x^4}}}} \right)^{\frac{1}{4}}} + c$$
D $${\left( {{x^4} + 1} \right)^{\frac{1}{4}}} + c$$
Answer :   $$ - {\left( {\frac{{{x^4} + 1}}{{{x^4}}}} \right)^{\frac{1}{4}}} + c$$

46. What is $$\int {{{\tan }^2}x\,{{\sec }^4}x\,dx} $$     equal to ?

A $$\frac{{{{\sec }^5}x}}{5} + \frac{{{{\sec }^3}x}}{3} + c$$
B $$\frac{{{{\tan }^5}x}}{5} + \frac{{{{\tan }^3}x}}{3} + c$$
C $$\frac{{{{\tan }^5}x}}{5} + \frac{{{{\sec }^3}x}}{3} + c$$
D $$\frac{{{{\sec }^5}x}}{5} + \frac{{{{\tan }^3}x}}{3} + c$$
Answer :   $$\frac{{{{\tan }^5}x}}{5} + \frac{{{{\tan }^3}x}}{3} + c$$

47. $$\int {\frac{{\left( {1 + x} \right)}}{{x{{\left( {1 + x{e^x}} \right)}^2}}}dx} {\text{ is }} = ?$$

A $$\ln \left| {\frac{{x{e^x}}}{{1 + x{e^x}}}} \right| + \frac{1}{{1 + x{e^x}}} + C$$
B $$\left( {1 + x{e^x}} \right) + \ln \left| {\frac{{x{e^x}}}{{1 + x{e^x}}}} \right| + C$$
C $$\frac{1}{{1 + x{e^x}}} + \ln \left| {x{e^x}\left( {1 + x{e^x}} \right)} \right| + C$$
D none of these
Answer :   $$\ln \left| {\frac{{x{e^x}}}{{1 + x{e^x}}}} \right| + \frac{1}{{1 + x{e^x}}} + C$$

48. $$\int {\frac{{dx}}{{\cos \,x + \sqrt 3 \sin \,x}}} $$     equal to :

A $$\log \,\tan \left( {\frac{x}{2} + \frac{\pi }{{12}}} \right) + C$$
B $$\log \,\tan \left( {\frac{x}{2} - \frac{\pi }{{12}}} \right) + C$$
C $$\frac{1}{2}\log \,\tan \left( {\frac{x}{2} + \frac{\pi }{{12}}} \right) + C$$
D $$\frac{1}{2}\log \,\tan \left( {\frac{x}{2} - \frac{\pi }{{12}}} \right) + C$$
Answer :   $$\frac{1}{2}\log \,\tan \left( {\frac{x}{2} + \frac{\pi }{{12}}} \right) + C$$

49. Let the equation of a curve passing through the point $$\left( {0,\,1} \right)$$  be given by $$y = \int {{x^2}.{e^{{x^3}}}} dx.$$    If the equation of the curve is written in the form $$x = f\left( y \right)$$   then $$f\left( y \right)$$  is :

A $$\sqrt {{{\log }_e}\left( {3y - 2} \right)} $$
B $$\root 3 \of {{{\log }_e}\left( {3y - 2} \right)} $$
C $$\root 3 \of {{{\log }_e}\left( {2 - 3y} \right)} $$
D none of these
Answer :   $$\root 3 \of {{{\log }_e}\left( {3y - 2} \right)} $$

50. The value of $$\int {\frac{{\sin \,x}}{{\sin \,4x}}} dx$$   is :

A $$\frac{1}{4}\log \left| {\frac{{\sin \,x - 1}}{{\sin \,x + 1}}} \right| - \frac{1}{{\sqrt 2 }}\log \left| {\frac{{\sqrt 2 \,\sin \,x - 1}}{{\sqrt 2 \,\sin \,x + 1}}} \right| + C$$
B $$\frac{1}{8}\log \left| {\frac{{\cos \,x - 1}}{{\cos \,x + 1}}} \right| - \frac{1}{{2\sqrt 2 }}\log \left| {\frac{{\sqrt 2 \,\cos \,x - 1}}{{\sqrt 2 \,\cos \,x + 1}}} \right| + C$$
C $$\frac{1}{8}\log \left| {\frac{{\sin \,x - 1}}{{\sin \,x + 1}}} \right| - \frac{1}{{4\sqrt 2 }}\log \left| {\frac{{\sqrt 2 \,\sin \,x - 1}}{{\sqrt 2 \,\sin \,x + 1}}} \right| + C$$
D None of these
Answer :   $$\frac{1}{8}\log \left| {\frac{{\sin \,x - 1}}{{\sin \,x + 1}}} \right| - \frac{1}{{4\sqrt 2 }}\log \left| {\frac{{\sqrt 2 \,\sin \,x - 1}}{{\sqrt 2 \,\sin \,x + 1}}} \right| + C$$