71.
If $$I = \int {\frac{1}{{2p}}\sqrt {\frac{{p - 1}}{{p + 1}}} dp} = f\left( p \right) + c,$$ then $$f\left( p \right)$$ is equal to :
A
$$\frac{1}{2}\ell n\left[ {p - \sqrt {{p^2} - 1} } \right]$$
B
$$\frac{1}{2}{\cos ^{ - 1}}p + \frac{1}{2}{\sec ^{ - 1}}p$$
C
$$\ell n\sqrt {p + \sqrt {{p^2} - 1} } - \frac{1}{2}{\sec ^{ - 1}}p$$
D
None of the above
Answer :
$$\ell n\sqrt {p + \sqrt {{p^2} - 1} } - \frac{1}{2}{\sec ^{ - 1}}p$$
View Solution
$$\eqalign{
& I = \int {\frac{1}{{2p}}\sqrt {\frac{{p - 1}}{{p + 1}}} dp} \cr
& = \frac{1}{2}\int {\frac{{p - 1}}{{{p\sqrt {\left( {p + 1} \right)\left( {p - 1} \right)} }}} dp} \cr
& = \frac{1}{2}\int {\frac{{pdp}}{{p\sqrt {{p^2} - 1} }} - \frac{1}{2}\int {\frac{{dp}}{{p\sqrt {{p^2} - 1} }}} } \cr
& = \frac{1}{2}\int {\frac{{dp}}{{\sqrt {{p^2} - 1} }} - \frac{1}{2}\int {\frac{{dp}}{{p\sqrt {{p^2} - 1} }}} } \cr
& = \frac{1}{2}{\log _e}\left( {p + \sqrt {{p^2} - 1} } \right) - \frac{1}{2}{\sec ^{ - 1}}p \cr
& \Rightarrow f\left( p \right) = \log \sqrt {p + \sqrt {{p^2} - 1} } - \frac{1}{2}{\sec ^{ - 1}}p \cr} $$
72.
If $$\int {\frac{{{x^2} - x + 1}}{{{x^2} + 1}}} {e^{{{\cot }^{ - 1}}x}}dx = A\left( x \right){e^{{{\cot }^{ - 1}}x}} + C,$$ then $$A\left( x \right)$$ is equal to :
A
$$ - x$$
B
$$x$$
C
$$\sqrt {1 - x} $$
D
$$\sqrt {1 + x} $$
Answer :
$$x$$
View Solution
$$\eqalign{
& {\text{Let }}I = \int {\frac{{{x^2} - x + 1}}{{{x^2} + 1}}} .{e^{{{\cot }^{ - 1}}x}}dx \cr
& {\text{Put }}x = \cot \,t \Rightarrow - {\text{cosec }}t\,dt = dx \cr
& {\text{Now, }}1 + {\cot ^2} = {\text{cose}}{{\text{c}}^2}t \cr
& \therefore \,I = \int {\frac{{{e^t}\left( {{{\cot }^2}t - \cot \,t + 1} \right)}}{{\left( {{\text{1}} + {{\cot }^2}t} \right)}}} \left( { - {\text{cose}}{{\text{c}}^2}t} \right)dt \cr
& = \int {{e^t}\left( {\cot \,t - {\text{cose}}{{\text{c}}^2}t} \right)dt} \cr
& = {e^t}\cot \,t + C \cr
& = {e^{{{\cot }^{ - 1}}x}}\left( x \right) + C \equiv A\left( x \right).{e^{{{\cot }^{ - 1}}x}} + C \cr
& \Rightarrow A\left( x \right) = x \cr} $$
73.
The integral $$\int {\frac{{2{x^{12}} + 5{x^9}}}{{{{\left( {{x^5} + {x^3} + 1} \right)}^3}}}dx} $$ is equal to:
A
$$\frac{{{x^5}}}{{2{{\left( {{x^5} + {x^3} + 1} \right)}^2}}} + C$$
B
$$\frac{{ - {x^{10}}}}{{2{{\left( {{x^5} + {x^3} + 1} \right)}^2}}} + C$$
C
$$\frac{{ - {x^5}}}{{{{\left( {{x^5} + {x^3} + 1} \right)}^2}}} + C$$
D
$$\frac{{{x^{10}}}}{{2{{\left( {{x^5} + {x^3} + 1} \right)}^2}}} + C$$
Answer :
$$\frac{{{x^{10}}}}{{2{{\left( {{x^5} + {x^3} + 1} \right)}^2}}} + C$$
View Solution
$$\int {\frac{{2{x^{12}} + 5{x^9}}}{{{{\left( {{x^5} + {x^3} + 1} \right)}^3}}}dx} $$
Dividing by $${{x^{15}}}$$ in numerator and denominator
$$\eqalign{
& \int {\frac{{\frac{2}{{{x^3}}} + \frac{5}{{{x^6}}}dx}}{{{{\left( {1 + \frac{1}{{{x^2}}} + \frac{1}{{{x^5}}}} \right)}^3}}}} \cr
& {\text{Substitute }}1 + \frac{1}{{{x^2}}} + \frac{1}{{{x^5}}} = t \cr
& \Rightarrow \left( {\frac{{ - 2}}{{{x^3}}} - \frac{5}{{{x^6}}}} \right)dx = dt \cr
& \Rightarrow \left( {\frac{2}{{{x^3}}} + \frac{5}{{{x^6}}}} \right)dx = - dt \cr
& {\text{This gives,}} \cr
& \int {\frac{{\frac{2}{{{x^3}}} + \frac{5}{{{x^6}}}dx}}{{{{\left( {1 + \frac{1}{{{x^2}}} + \frac{1}{{{x^5}}}} \right)}^3}}}} = \int {\frac{{ - dt}}{{{t^3}}}} = \frac{1}{{2{t^2}}} + C \cr
& = \frac{1}{{2{{\left( {1 + \frac{1}{{{x^2}}} + \frac{1}{{{x^5}}}} \right)}^2}}} + C \cr
& = \frac{{{x^{10}}}}{{2{{\left( {{x^5} + {x^3} + 1} \right)}^2}}} + C \cr} $$
74.
if $$\int {f\left( x \right)dx = \psi \left( x \right),} $$ then $$\int {{x^5}f\left( {{x^3}} \right)dx} ,$$ is equal to-
A
$$\frac{1}{3}\left[ {{x^3}\psi \left( {{x^3}} \right) - \int {{x^2}\psi \left( {{x^3}} \right)dx} } \right] + C$$
B
$$\frac{1}{3}{x^3}\psi \left( {{x^3}} \right) - 3\int {{x^3}\psi \left( {{x^3}} \right)dx} + C$$
C
$$\frac{1}{3}{x^3}\psi \left( {{x^3}} \right) - \int {{x^2}\psi \left( {{x^3}} \right)dx} + C$$
D
$$\frac{1}{3}\left[ {{x^3}\psi \left( {{x^3}} \right) - \int {{x^3}\psi \left( {{x^3}} \right)dx} } \right] + C$$
Answer :
$$\frac{1}{3}{x^3}\psi \left( {{x^3}} \right) - \int {{x^2}\psi \left( {{x^3}} \right)dx} + C$$
View Solution
$$\eqalign{
& {\text{Let }}\int {f\left( x \right)dx = \psi \left( x \right)} \cr
& {\text{Let}}\,I = \int {{x^5}f\left( {{x^3}} \right)dx} \cr
& {\text{put }}{x^3} = t\,\, \Rightarrow 3{x^2}dx = dt \cr
& I = \frac{1}{3}\int {3.{x^2}.{x^3}.f\left( {{x^3}} \right)} dx \cr
& = \frac{1}{3}\int {tf\left( t \right)dt} \cr
& = \frac{1}{3}\left[ {t\int {f\left( t \right)dt - } \int {f\left( t \right)dt} } \right] \cr
& = \frac{1}{3}\left[ {t\psi \left( t \right) - \int {\psi \left( t \right)dt} } \right] \cr
& = \frac{1}{3}\left[ {{x^3}\psi \left( {{x^3}} \right) - 3\int {{x^2}\psi \left( {{x^3}} \right)dx} } \right] + C \cr
& = \frac{1}{3}{x^3}\psi \left( {{x^3}} \right) - \int {{x^2}\psi \left( {{x^3}} \right)dx + C} \cr} $$
75.
$$\int {\cos \left\{ {2{{\tan }^{ - 1}}\sqrt {\frac{{1 - x}}{{1 + x}}} } \right\}dx} $$ is equal to :
A
$$\frac{1}{8}\left( {{x^2} - 1} \right) + k$$
B
$$\frac{1}{2}{x^2} + k$$
C
$$\frac{1}{2}x + k$$
D
none of these
Answer :
$$\frac{1}{2}{x^2} + k$$
View Solution
$$\eqalign{
& {\text{Put }}x = \cos \,2\theta \cr
& \therefore I = \int {\cos \left\{ {2{{\tan }^{ - 1}}\tan \,\theta } \right\}} \left( { - 2\sin \,2\theta } \right)d\theta \cr
& = - \int {\sin \,4\theta\,d\theta = \frac{1}{4}\cos \,4\theta + c} \cr
& = \frac{1}{4}\left( {2{x^2} - 1} \right) + c \cr
& = \frac{1}{2}{x^2} + k \cr} $$
76.
Let $$f\left( x \right) = \int {{e^x}\left( {x - 1} \right)\left( {x - 2} \right)dx} .$$
Then $$f$$ decreases in the interval :
A
$$\left( { - \infty ,\, - 2} \right)$$
B
$$\left( { - 2,\, - 1} \right)$$
C
$$\left( {1,\,2} \right)$$
D
$$\left( {2,\, + \infty } \right)$$
Answer :
$$\left( {1,\,2} \right)$$
View Solution
$$\eqalign{
& f\left( x \right) = \int {{e^x}\left( {x - 1} \right)\left( {x - 2} \right)dx} \cr
& {\text{For decreasing function, }}f'\left( x \right) < 0 \cr
& \Rightarrow {e^x}\left( {x - 1} \right)\left( {x - 2} \right) < 0 \cr
& \Rightarrow \left( {x - 1} \right)\left( {x - 2} \right) < 0 \cr
& \Rightarrow 1 < x < 2 \cr
& \therefore \,{e^x} > 0\,\forall \,x\, \in R \cr} $$
77.
$$\int {32{x^3}{{\left( {\log \,x} \right)}^2}dx} $$ is equal to :
A
$$8{x^4}{\left( {\log \,x} \right)^2} + C$$
B
$${x^4}\left\{ {8{{\left( {\log \,x} \right)}^2} - 4\left( {\log \,x} \right) + 1} \right\} + C$$
C
$${x^4}\left\{ {8{{\left( {\log \,x} \right)}^2} - 4\left( {\log \,x} \right)} \right\} + C$$
D
$${x^3}\left\{ {{{\left( {\log \,x} \right)}^2} - 2\left( {\log \,x} \right)} \right\} + C$$
Answer :
$${x^4}\left\{ {8{{\left( {\log \,x} \right)}^2} - 4\left( {\log \,x} \right) + 1} \right\} + C$$
View Solution
$$\eqalign{
& {\text{Let }}I = \int {32{x^3}{{\left( {\log \,x} \right)}^2}dx} \cr
& = 32\left\{ {{{\left( {\log \,x} \right)}^2}\frac{{{x^4}}}{4} - \int {2\,\log \,x\frac{1}{x}.\frac{{{x^4}}}{4}dx} } \right\} \cr
& = \frac{{32}}{4}{x^4}{\left( {\log \,x} \right)^2} - 16\int {{x^3}\log } \,x\,dx \cr
& = 8{x^4}{\left( {\log \,x} \right)^2} - 4{x^4}\log \,x + 4\int {{x^3}dx} \cr
& = {x^4}\left\{ {8{{\left( {\log \,x} \right)}^2} - 4\,\log \,x + 1} \right\} + C \cr} $$
78.
If $$\int {\frac{{\sin \,x}}{{\sin \left( {x - \alpha } \right)}}dx = Ax + B\log \,\sin \left( {x - \alpha } \right), + C,} $$ then value of $$\left( {A,\,B} \right)$$ is-
A
$$\left( { - \cos \,\alpha ,\,\sin \,\alpha } \right)$$
B
$$\left( {\cos \,\alpha ,\,\sin \,\alpha } \right)$$
C
$$\left( { - \sin \,\alpha ,\,\cos \,\alpha } \right)$$
D
$$\left( {\sin \,\alpha ,\,\cos \,\alpha } \right)$$
Answer :
$$\left( {\cos \,\alpha ,\,\sin \,\alpha } \right)$$
View Solution
$$\eqalign{
& \int {\frac{{\sin \,x}}{{\sin \left( {x - \alpha } \right)}}dx} = \int {\frac{{\sin \,\left( {x - \alpha + \alpha } \right)}}{{\sin \left( {x - \alpha } \right)}}dx} \cr
& = \int {\frac{{\sin \left( {x - \alpha } \right)\cos \,\alpha + \cos \left( {x - \alpha } \right)\sin \,\alpha }}{{\sin \left( {x - \alpha } \right)}}dx} \cr
& = \int {\left\{ {\cos \,\alpha + \sin \,\alpha \,\cot \left( {x - \alpha } \right)} \right\}dx} \cr
& = \left( {\cos \,\alpha } \right)x + \left( {\sin \,\alpha } \right)\log \,\sin \,\left( {x - \alpha } \right) + C \cr
& \therefore A = \cos \,\alpha ,\,\,\,B = \sin \,\alpha \cr} $$
79.
If the $$\int {\frac{{5\,\tan \,x}}{{\tan \,x - 2}}dx} = x + a\,\ln \left| {\sin \,x - 2\cos \,x} \right| + k,$$ then $$a$$ is equal to:
A
$$ - 1$$
B
$$ - 2$$
C
$$1$$
D
$$2$$
Answer :
$$2$$
View Solution
$$\eqalign{
& \int {\frac{{5\,\tan \,x}}{{\tan \,x - 2}}dx} = \int {\frac{{5\frac{{\sin \,x}}{{\cos \,x}}}}{{\frac{{\sin \,x}}{{\cos \,x}} - 2}}dx} \cr
& = \int {\left( {\frac{{5\sin \,x}}{{\cos \,x}} \times \frac{{\cos \,x}}{{\sin \,x - 2\,\cos \,x}}} \right)dx} \cr
& = \int {\frac{{5\sin \,x\,dx}}{{\sin \,x - 2\cos \,x}}} \cr
& = \int {\left( {\frac{{4\sin \,x + \sin \,x + 2\cos \,x - 2\cos \,x}}{{\sin \,x - 2\cos \,x}}} \right)} dx \cr
& = \int {\left( {\frac{{\left( {\sin \,x - 2\cos \,x} \right) + \left( {4sin\,x + 2\cos \,x} \right)}}{{\sin \,x - 2\cos \,x}}} \right)} dx \cr
& = \int {\left( {\frac{{\left( {\sin \,x - 2\cos \,x} \right) + 2\left( {\cos \,x + 2\sin \,x} \right)}}{{\sin \,x - 2\cos \,x}}} \right)} dx \cr
& = \int {\frac{{\sin \,x - 2\,\cos \,x}}{{\sin \,x - 2\cos \,x}}} dx + 2\int {\left( {\frac{{\cos \,x + 2\sin \,x}}{{\sin \,x - 2\cos \,x}}} \right)dx} \cr
& = \int {dx + 2} \int {\frac{{\cos \,x + 2\sin \,x}}{{\sin \,x - 2\cos \,x}}dx} \cr
& = {I_1} + {I_2} \cr
& {\text{Where}}\,\,{I_1} = \int {dx} {\text{ and}} \cr
& {I_2} = 2\int {\frac{{\cos \,x + 2\sin \,x}}{{\sin \,x - 2\cos \,x}}} dx \cr
& {\text{Put }}\sin \,x - 2\cos \,x = t \cr
& \Rightarrow \left( {\cos \,x + 2\sin \,x} \right)dx = dt \cr
& \therefore {I_2} = 2\int {\frac{{dt}}{t} = 2\ln \,t + C = 2\,\ln \,} \left( {\sin \,x - 2\cos \,x} \right) + C \cr
& {\text{Hence,}}\,\,{I_1} + {I_2} = \int {dx + 2\ln \left( {\sin \,x - 2\cos \,x} \right) + c} \cr
& = x + 2\ln \left|( {\sin \,x - 2\cos \,x} \right)| + k\,\,\, \Rightarrow a = 2 \cr} $$
80.
Solve this : $$\int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\frac{{\ln \left( {\cos \,x} \right)}}{{1 + {e^x}.{e^{\sin \,x}}}}dx = ?} $$
A
$$ - 2\pi \,\ln \,2$$
B
$$ - \frac{\pi }{4}\,\ln \,2$$
C
$$ - \pi \,\ln \,2$$
D
$$ - \frac{\pi }{2}\,\ln \,2$$
Answer :
$$ - \frac{\pi }{2}\,\ln \,2$$
View Solution
$$\eqalign{
& I = \int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\frac{{\ln \left( {\cos \,x} \right)}}{{1 + {e^x}.{e^{\sin \,x}}}}dx} \cr
& \Rightarrow I = \int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\frac{{\ln \left( {\cos \,x} \right)}}{{1 + {e^{ - \left( {x + \sin \,x} \right)}}}}dx} \cr
& \Rightarrow 2I = \int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\frac{{\ln \left( {\cos \,x} \right)}}{{1 + {e^{x + \sin \,x}}}}\left( {1 + {e^{\left( {x + \sin \,x} \right)}}} \right)} dx \cr
& \Rightarrow 2I = \int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\ln \left( {\cos \,x} \right)dx} \cr
& \Rightarrow 2I = 2\int\limits_0^{\frac{\pi }{2}} {\ln \left( {\cos \,x} \right)dx} \cr
& \Rightarrow I = - \frac{\pi }{2}\ln \,2 \cr} $$