Indefinite Integration MCQ Questions & Answers in Calculus | Maths

Learn Indefinite Integration MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

71. If $$I = \int {\frac{1}{{2p}}\sqrt {\frac{{p - 1}}{{p + 1}}} dp} = f\left( p \right) + c,$$       then $$f\left( p \right)$$  is equal to :

A $$\frac{1}{2}\ell n\left[ {p - \sqrt {{p^2} - 1} } \right]$$
B $$\frac{1}{2}{\cos ^{ - 1}}p + \frac{1}{2}{\sec ^{ - 1}}p$$
C $$\ell n\sqrt {p + \sqrt {{p^2} - 1} } - \frac{1}{2}{\sec ^{ - 1}}p$$
D None of the above
Answer :   $$\ell n\sqrt {p + \sqrt {{p^2} - 1} } - \frac{1}{2}{\sec ^{ - 1}}p$$

72. If $$\int {\frac{{{x^2} - x + 1}}{{{x^2} + 1}}} {e^{{{\cot }^{ - 1}}x}}dx = A\left( x \right){e^{{{\cot }^{ - 1}}x}} + C,$$         then $$A\left( x \right)$$  is equal to :

A $$ - x$$
B $$x$$
C $$\sqrt {1 - x} $$
D $$\sqrt {1 + x} $$
Answer :   $$x$$

73. The integral $$\int {\frac{{2{x^{12}} + 5{x^9}}}{{{{\left( {{x^5} + {x^3} + 1} \right)}^3}}}dx} $$     is equal to:

A $$\frac{{{x^5}}}{{2{{\left( {{x^5} + {x^3} + 1} \right)}^2}}} + C$$
B $$\frac{{ - {x^{10}}}}{{2{{\left( {{x^5} + {x^3} + 1} \right)}^2}}} + C$$
C $$\frac{{ - {x^5}}}{{{{\left( {{x^5} + {x^3} + 1} \right)}^2}}} + C$$
D $$\frac{{{x^{10}}}}{{2{{\left( {{x^5} + {x^3} + 1} \right)}^2}}} + C$$
Answer :   $$\frac{{{x^{10}}}}{{2{{\left( {{x^5} + {x^3} + 1} \right)}^2}}} + C$$

74. if $$\int {f\left( x \right)dx = \psi \left( x \right),} $$     then $$\int {{x^5}f\left( {{x^3}} \right)dx} ,$$    is equal to-

A $$\frac{1}{3}\left[ {{x^3}\psi \left( {{x^3}} \right) - \int {{x^2}\psi \left( {{x^3}} \right)dx} } \right] + C$$
B $$\frac{1}{3}{x^3}\psi \left( {{x^3}} \right) - 3\int {{x^3}\psi \left( {{x^3}} \right)dx} + C$$
C $$\frac{1}{3}{x^3}\psi \left( {{x^3}} \right) - \int {{x^2}\psi \left( {{x^3}} \right)dx} + C$$
D $$\frac{1}{3}\left[ {{x^3}\psi \left( {{x^3}} \right) - \int {{x^3}\psi \left( {{x^3}} \right)dx} } \right] + C$$
Answer :   $$\frac{1}{3}{x^3}\psi \left( {{x^3}} \right) - \int {{x^2}\psi \left( {{x^3}} \right)dx} + C$$

75. $$\int {\cos \left\{ {2{{\tan }^{ - 1}}\sqrt {\frac{{1 - x}}{{1 + x}}} } \right\}dx} $$      is equal to :

A $$\frac{1}{8}\left( {{x^2} - 1} \right) + k$$
B $$\frac{1}{2}{x^2} + k$$
C $$\frac{1}{2}x + k$$
D none of these
Answer :   $$\frac{1}{2}{x^2} + k$$

76. Let $$f\left( x \right) = \int {{e^x}\left( {x - 1} \right)\left( {x - 2} \right)dx} .$$
Then $$f$$ decreases in the interval :

A $$\left( { - \infty ,\, - 2} \right)$$
B $$\left( { - 2,\, - 1} \right)$$
C $$\left( {1,\,2} \right)$$
D $$\left( {2,\, + \infty } \right)$$
Answer :   $$\left( {1,\,2} \right)$$

77. $$\int {32{x^3}{{\left( {\log \,x} \right)}^2}dx} $$     is equal to :

A $$8{x^4}{\left( {\log \,x} \right)^2} + C$$
B $${x^4}\left\{ {8{{\left( {\log \,x} \right)}^2} - 4\left( {\log \,x} \right) + 1} \right\} + C$$
C $${x^4}\left\{ {8{{\left( {\log \,x} \right)}^2} - 4\left( {\log \,x} \right)} \right\} + C$$
D $${x^3}\left\{ {{{\left( {\log \,x} \right)}^2} - 2\left( {\log \,x} \right)} \right\} + C$$
Answer :   $${x^4}\left\{ {8{{\left( {\log \,x} \right)}^2} - 4\left( {\log \,x} \right) + 1} \right\} + C$$

78. If $$\int {\frac{{\sin \,x}}{{\sin \left( {x - \alpha } \right)}}dx = Ax + B\log \,\sin \left( {x - \alpha } \right), + C,} $$         then value of $$\left( {A,\,B} \right)$$  is-

A $$\left( { - \cos \,\alpha ,\,\sin \,\alpha } \right)$$
B $$\left( {\cos \,\alpha ,\,\sin \,\alpha } \right)$$
C $$\left( { - \sin \,\alpha ,\,\cos \,\alpha } \right)$$
D $$\left( {\sin \,\alpha ,\,\cos \,\alpha } \right)$$
Answer :   $$\left( {\cos \,\alpha ,\,\sin \,\alpha } \right)$$

79. If the $$\int {\frac{{5\,\tan \,x}}{{\tan \,x - 2}}dx} = x + a\,\ln \left| {\sin \,x - 2\cos \,x} \right| + k,$$          then $$a$$ is equal to:

A $$ - 1$$
B $$ - 2$$
C $$1$$
D $$2$$
Answer :   $$2$$

80. Solve this : $$\int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\frac{{\ln \left( {\cos \,x} \right)}}{{1 + {e^x}.{e^{\sin \,x}}}}dx = ?} $$

A $$ - 2\pi \,\ln \,2$$
B $$ - \frac{\pi }{4}\,\ln \,2$$
C $$ - \pi \,\ln \,2$$
D $$ - \frac{\pi }{2}\,\ln \,2$$
Answer :   $$ - \frac{\pi }{2}\,\ln \,2$$