Circle MCQ Questions & Answers in Geometry | Maths

Learn Circle MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.

91. If the two circles $${\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} = {r^2}$$     and $${x^2} + {y^2} - 8x + 2y + 8 = 0$$      intersect in two distinct points, then-

A $$2 < r < 8$$
B $$r < 2$$
C $$r = 2$$
D $$r > 2$$
Answer :   $$2 < r < 8$$

92. The range of values of $$r$$ for which the point $$\left( { - 5 + \frac{r}{{\sqrt 2 }},\, - 3 + \frac{r}{{\sqrt 2 }}} \right)$$     is an interior point of the major segment of the circle $${x^2} + {y^2} = 16,$$   cut off by the line $$x + y = 2,$$   is :

A $$\left( { - \infty ,\,5\sqrt 2 } \right)$$
B $$\left( {4\sqrt 2 - \sqrt {14} ,\,5\sqrt 2 } \right)$$
C $$\left( {4\sqrt 2 - \sqrt {14} ,\,4\sqrt 2 + \sqrt {14} } \right)$$
D none of these
Answer :   $$\left( {4\sqrt 2 - \sqrt {14} ,\,5\sqrt 2 } \right)$$

93. If a tangent to the circle $${x^2} + {y^2} = 1$$   intersects the coordinate axes at distinct points $$P$$ and $$Q,$$  then the locus of the mid-point of $$PQ$$  is:

A $${x^2} + {y^2} - 4{x^2}{y^2} = 0$$
B $${x^2} + {y^2} - 2xy = 0$$
C $${x^2} + {y^2} - 16{x^2}{y^2} = 0$$
D $${x^2} + {y^2} - 2{x^2}{y^2} = 0$$
Answer :   $${x^2} + {y^2} - 4{x^2}{y^2} = 0$$

94. The locus of the centre of a circle, which touches externally the circle $${x^2} + {y^2} - 6x - 6y + 14 = 0$$      and also touches the $$y$$-axis, is given by the equation :

A $${x^2} - 6x - 10y + 14 = 0$$
B $${x^2} - 10x - 6y + 14 = 0$$
C $${y^2} - 6x - 10y + 14 = 0$$
D $${y^2} - 10x - 6y + 14 = 0$$
Answer :   $${y^2} - 10x - 6y + 14 = 0$$

95. The range of values of $$a$$ for which the point $$\left( {a,\,4} \right)$$  is outside the circles $${x^2} + {y^2} + 10x = 0$$    and $${x^2} + {y^2} - 12x + 20 = 0$$     is :

A $$\left( { - \infty ,\, - 8} \right) \cup \left( { - 2,\,6} \right) \cup \left( {6,\, + \infty } \right)$$
B $$\left( { - 8,\, - 2} \right)$$
C $$\left( { - \infty ,\, - 8} \right) \cup \left( { - 2,\, + \infty } \right)$$
D none of these
Answer :   $$\left( { - \infty ,\, - 8} \right) \cup \left( { - 2,\,6} \right) \cup \left( {6,\, + \infty } \right)$$

96. The angle between a pair of tangents drawn from a point $$P$$ to the curve $${x^2} + {y^2} + 4x - 6y + 9{\sin ^2}\alpha + 13{\cos ^2}\alpha = 0$$         is $$2\alpha .$$  The locus of $$P$$ is :

A $${x^2} + {y^2} + 4x - 6y + 4 = 0$$
B $${x^2} + {y^2} + 4x - 6y - 9 = 0$$
C $${x^2} + {y^2} + 4x - 6y - 4 = 0$$
D $${x^2} + {y^2} + 4x - 6y + 9 = 0$$
Answer :   $${x^2} + {y^2} + 4x - 6y + 9 = 0$$

97. The point $$\left( {\left[ {P + 1} \right],\,\left[ P \right]} \right)$$    (where $$\left[ x \right]$$ is the greatest integer less than or equal to $$x$$), lying inside the region bounded by the circle $${x^2} + {y^2} - 2x - 15 = 0$$     and $${x^2} + {y^2} - 2x - 7 = 0,$$     then :

A $$P\, \in \left[ { - 1,\,0} \right) \cup \left[ {0,\,1} \right) \cup \left[ {1,\,2} \right)$$
B $$P\, \in \left[ { - 1,\,2} \right) - \left\{ {0,\,1} \right\}$$
C $$P\, \in \left( { - 1,\,2} \right)$$
D none of these
Answer :   none of these

98. The equations of two circles are $${x^2} + {y^2} - 26y + 25 = 0$$     and $${x^2} + {y^2} = 25.$$   Then :

A they touch each other
B they cut each other orthogonally
C one circle is inside the other circle
D none of these
Answer :   they cut each other orthogonally

99. The point $$P$$ moves in the plane of a regular hexagon such that the sum of the squares of its distances from the vertices of the hexagon is $$6{a^2}.$$  If the radius of the circumcircle of the hexagon is $$r\left( { < a} \right)$$  then the locus of $$P$$ is :

A a pair of straight lines
B an ellipse
C a circle of radius $$\sqrt {{a^2} - {r^2}} $$
D an ellipse of major axis $$a$$ and minor axis $$r$$
Answer :   a circle of radius $$\sqrt {{a^2} - {r^2}} $$

100. If the two circles $${\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} = {r^2}$$     and $${x^2} + {y^2} - 8x + 2y + 8 = 0$$      intersect in two distinct point, then-

A $$r > 2$$
B $$2 < r < 8$$
C $$r < 2$$
D $$r = 2$$
Answer :   $$2 < r < 8$$